Physics Department, University of California at Davis, Davis, California 95616, USA.
Phys Rev Lett. 2012 Aug 31;109(9):097205. doi: 10.1103/PhysRevLett.109.097205. Epub 2012 Aug 28.
We use numerical linked-cluster expansions to compute the specific heat C(T) and entropy S(T) of a quantum spin ice Hamiltonian for Yb2Ti2O7 using anisotropic exchange interactions, recently determined from inelastic neutron scattering measurements, and find good agreement with experimental calorimetric data. This vindicates Yb2Ti2O7 as a model quantum spin ice. We find that in the perturbative weak quantum regime, such a system has a ferrimagnetic ordered ground state, with two peaks in C(T): a Schottky anomaly signaling the paramagnetic to spin ice crossover, followed at a lower temperature by a sharp peak accompanying a first-order phase transition to the ordered state. We suggest that the two C(T) features observed in Yb2Ti2O7 are associated with the same physics. Spin excitations in this regime consist of weakly confined spinon-antispinon pairs. We anticipate that the conventional ground state with exotic quantum dynamics will prove a prevalent characteristic of many real quantum spin ice materials.
我们使用数值链接簇展开方法,计算了 Yb2Ti2O7 量子自旋冰哈密顿量的比热 C(T) 和熵 S(T),使用的各向异性交换相互作用是最近根据非弹性中子散射测量确定的,结果与实验量热数据吻合良好。这证明了 Yb2Ti2O7 是一个模型量子自旋冰。我们发现,在微扰弱量子 regime 下,这样的系统具有亚铁磁有序基态,在 C(T)中有两个峰值:一个 Schottky 异常标志着顺磁到自旋冰的交叉,然后在较低温度下,伴随着一阶相变到有序态的尖锐峰值。我们认为,在 Yb2Ti2O7 中观察到的两个 C(T)特征与相同的物理现象有关。在这个 regime 中,自旋激发由弱束缚的自旋子-反自旋子对组成。我们预计,具有奇异量子动力学的传统基态将成为许多真实量子自旋冰材料的普遍特征。