Department of Physics, University of Arizona, Tucson, Arizona 85721, USA.
Phys Rev Lett. 2012 May 11;108(19):193002. doi: 10.1103/PhysRevLett.108.193002. Epub 2012 May 9.
Using high-order harmonic attosecond pulse trains, we investigate the photoionization dynamics and transient electronic structure of a helium atom in the presence of moderately strong (∼10(12) W cm(-2)) femtosecond laser pulses. We observe quantum interferences between photoexcitation paths from the ground state to different laser-dressed Floquet state components. As the intensity ramps on femtosecond time scales, we observe switching between ionization channels mediated by different atomic resonances. Using precision measurements of ion yields and photoelectron distributions, the quantum phase difference between interfering paths is extracted for each ionization channel and compared with simulations. Our results elucidate photoionization mechanisms in strong fields and open the doors for photoabsorption or photoionization control schemes.
利用高阶谐波阿秒脉冲串,我们研究了在中等强度(约 10(12) W cm(-2))飞秒激光脉冲存在下氦原子的光致电离动力学和瞬态电子结构。我们观察到从基态到不同激光修饰的弗洛凯态分量的光激发路径之间的量子干涉。随着飞秒时间尺度上强度的增加,我们观察到由不同原子共振介导的电离通道之间的切换。通过对离子产率和光电子分布的精确测量,为每个电离通道提取了干涉路径之间的量子相位差,并与模拟结果进行了比较。我们的结果阐明了强场中的光致电离机制,并为光吸收或光电离控制方案开辟了道路。