Departamento de Química Física, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain.
Phys Rev Lett. 2012 Jun 8;108(23):230502. doi: 10.1103/PhysRevLett.108.230502. Epub 2012 Jun 4.
Multipartite entanglement is a key concept in quantum mechanics for which, despite the experimental progress in entangling three or more quantum devices, there is still no general quantitative theory that exists. In order to characterize the robustness of multipartite entanglement, one often employs generalized Werner states, that is, mixtures of a Greenberger-Horne-Zeilinger (GHZ) state and the completely unpolarized state. While two-qubit Werner states have been instrumental for various important advancements in quantum information, as of now there is no quantitative account for such states of more than two qubits. By using the GHZ symmetry introduced recently, we find exact results for tripartite entanglement in three-qubit generalized Werner states and, moreover, the entire family of full-rank mixed states that share the same symmetries.
多体纠缠是量子力学中的一个关键概念,尽管在纠缠三个或更多量子设备方面已经取得了实验进展,但仍然没有普遍存在的定量理论。为了描述多体纠缠的鲁棒性,人们通常采用广义 Werner 态,即 Greenberger-Horne-Zeilinger(GHZ)态和完全非极化态的混合物。虽然两量子比特 Werner 态在量子信息的各种重要进展中发挥了重要作用,但到目前为止,还没有针对超过两量子比特的这种态的定量描述。通过使用最近引入的 GHZ 对称性,我们找到了三量子比特广义 Werner 态中三体纠缠的精确结果,并且还找到了具有相同对称性的全秩混合态的整个家族。