Rohrmann René D, Zurbriggen Ernesto
Instituto de Ciencias Astronómicas, de la Tierra y del Espacio, UNSJ-CONICET, Av. España 1512 Sur, 5400 San Juan, Argentina.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 1):051109. doi: 10.1103/PhysRevE.85.051109. Epub 2012 May 8.
We introduce a conditional pair distribution function (CPDF) which characterizes the probability density of finding an object (e.g., a particle in a fluid) to within a certain distance of each other, with each of these two having a nearest neighbor to a fixed but otherwise arbitrary distance. This function describes special four-body configurations, but also contains contributions due to the so-called mutual nearest neighbor (two-body) and shared neighbor (three-body) configurations. The CPDF is introduced to improve a Helmholtz free energy method based on space partitions. We derive exact expressions of the CPDF and various associated quantities for randomly distributed, noninteracting points at Euclidean spaces of one, two, and three dimensions. Results may be of interest in many diverse scientific fields, from fluid physics to social and biological sciences.
我们引入了一种条件对分布函数(CPDF),它描述了在彼此特定距离内找到一个物体(例如流体中的一个粒子)的概率密度,其中这两个物体中的每一个都有一个到固定但任意距离的最近邻。这个函数描述了特殊的四体构型,但也包含了由于所谓的相互最近邻(二体)和共享邻(三体)构型所产生的贡献。引入CPDF是为了改进基于空间划分的亥姆霍兹自由能方法。我们推导了一维、二维和三维欧几里得空间中随机分布、非相互作用点的CPDF及各种相关量的精确表达式。这些结果可能在从流体物理学到社会和生物科学等许多不同的科学领域中引起关注。