Benenti Giuliano, Carlo Gabriel G, Prosen Tomaž
Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia and Center for Nonlinear and Complex Systems, Università degli Studi dell'Insubria, Via Valleggio 11, 22100 Como, Italy.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 1):051129. doi: 10.1103/PhysRevE.85.051129. Epub 2012 May 18.
We propose the Wigner separability entropy as a measure of complexity of a quantum state. This quantity measures the number of terms that effectively contribute to the Schmidt decomposition of the Wigner function with respect to a chosen phase-space decomposition. We prove that the Wigner separability entropy is equal to the operator space entanglement entropy, measuring entanglement in the space of operators, and, for pure states, twice the entropy of entanglement. The quantum to classical correspondence between the Wigner separability entropy and the separability entropy of the classical phase-space Liouville density is illustrated by means of numerical simulations of chaotic maps. In this way, the separability entropy emerges as an extremely broad complexity quantifier in both the classical and quantum realms.
我们提出将维格纳可分性熵作为量子态复杂性的一种度量。该量度衡量了在相对于选定的相空间分解下,对维格纳函数的施密特分解有有效贡献的项的数量。我们证明,维格纳可分性熵等于算子空间纠缠熵(用于度量算子空间中的纠缠),并且对于纯态而言,它是纠缠熵的两倍。通过混沌映射的数值模拟,展示了维格纳可分性熵与经典相空间刘维尔密度的可分性熵之间的量子与经典对应关系。通过这种方式,可分性熵在经典和量子领域中都成为一种极其宽泛的复杂性度量。