Theodorakis Panagiotis E, Fytas Nikolaos G
Faculty of Physics, University of Vienna, Botlzmanngasse 5, A-1090 Vienna, Austria.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 1):011140. doi: 10.1103/PhysRevE.86.011140. Epub 2012 Jul 31.
The effects of bond randomness on the universality aspects of a two-dimensional (d = 2) Blume-Capel model embedded in the triangular lattice are discussed. The system is studied numerically in both its first- and second-order phase-transition regimes by a comprehensive finite-size scaling analysis for a particularly suitable value of the disorder strength. We find that our data for the second-order phase transition, emerging under random bonds from the second-order regime of the pure model, are compatible with the universality class of the two-dimensional (2D) random Ising model. Furthermore, we find evidence that, the second-order transition emerging under bond randomness from the first-order regime of the pure model, belongs again to the same universality class. Although the first finding reinforces the scenario of strong universality in the 2D Ising model with quenched disorder, the second is in difference from the critical behavior, emerging under randomness, in the cases of the ex-first-order transitions of the Potts model. Finally, our results verify previous renormalization-group calculations on the Blume-Capel model with disorder in the crystal-field coupling.
讨论了键无序对嵌入三角晶格的二维(d = 2)布卢姆 - 卡佩尔模型普遍性方面的影响。通过对无序强度的一个特别合适的值进行全面的有限尺寸标度分析,对该系统在其一阶和二阶相变区域进行了数值研究。我们发现,在随机键作用下从纯模型的二阶区域出现的二阶相变数据,与二维(2D)随机伊辛模型的普适类兼容。此外,我们发现有证据表明,在随机键作用下从纯模型的一阶区域出现的二阶相变,同样属于相同的普适类。虽然第一个发现强化了具有淬火无序的二维伊辛模型中强普遍性的情形,但第二个发现与在随机情况下出现的临界行为不同,例如在Potts模型的前一阶相变情况中。最后,我们的结果验证了先前关于晶体场耦合中具有无序的布卢姆 - 卡佩尔模型的重整化群计算。