Ni Xuan, Huang Liang, Lai Ying-Cheng, Grebogi Celso
School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 2):016702. doi: 10.1103/PhysRevE.86.016702. Epub 2012 Jul 11.
Scarring in quantum systems with classical chaotic dynamics is one of the most remarkable phenomena in modern physics. Previous works were concerned mostly with nonrelativistic quantum systems described by the Schrödinger equation. The question remains outstanding of whether truly relativistic quantum particles that obey the Dirac equation can scar. A significant challenge is the lack of a general method for solving the Dirac equation in closed domains of arbitrary shape. In this paper, we develop a numerical framework for obtaining complete eigensolutions of massless fermions in general two-dimensional confining geometries. The key ingredients of our method are the proper handling of the boundary conditions and an efficient discretization scheme that casts the original equation in a matrix representation. The method is validated by (1) comparing the numerical solutions to analytic results for a geometrically simple confinement and (2) verifying that the calculated energy level-spacing statistics of integrable and chaotic geometries agree with the known results. Solutions of the Dirac equation in a number of representative chaotic geometries establish firmly the existence of scarring of Dirac fermions.
具有经典混沌动力学的量子系统中的疤痕现象是现代物理学中最显著的现象之一。先前的工作主要关注由薛定谔方程描述的非相对论量子系统。对于服从狄拉克方程的真正相对论量子粒子是否会出现疤痕这一问题,仍然悬而未决。一个重大挑战是缺乏在任意形状的封闭域中求解狄拉克方程的通用方法。在本文中,我们开发了一个数值框架,用于在一般二维约束几何结构中获得无质量费米子的完整本征解。我们方法的关键要素是对边界条件的恰当处理以及一种有效的离散化方案,该方案将原始方程转化为矩阵表示形式。该方法通过以下方式得到验证:(1)将数值解与几何结构简单的约束情形下的解析结果进行比较;(2)验证所计算的可积和混沌几何结构的能级间距统计与已知结果相符。在一些具有代表性的混沌几何结构中狄拉克方程的解,确凿地证实了狄拉克费米子疤痕的存在。