Bullo Darío E, Wisniacki Diego A
Departamento de Física J J Giambiagi, FCEN, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 2):026206. doi: 10.1103/PhysRevE.86.026206. Epub 2012 Aug 15.
The local density of states (LDOS) is a distribution that characterizes the effects of perturbations on quantum systems. Recently, a semiclassical theory was proposed for the LDOS of chaotic billiards and maps. This theory predicts that the LDOS is a Breit-Wigner distribution independent of the perturbation strength and also gives a semiclassical expression for the LDOS width. Here, we test the validity of such an approximation in quantum maps by varying the degree of chaoticity, the region in phase space where the perturbation is applied, and the intensity of the perturbation. We show that for highly chaotic maps or strong perturbations the semiclassical theory of the LDOS is accurate to describe the quantum distribution. Moreover, the width of the LDOS is also well represented for its semiclassical expression in the case of mixed classical dynamics.
局域态密度(LDOS)是一种表征微扰对量子系统影响的分布。最近,针对混沌台球和映射的LDOS提出了一种半经典理论。该理论预测,LDOS是一种与微扰强度无关的布赖特-维格纳分布,并且还给出了LDOS宽度的半经典表达式。在此,我们通过改变混沌程度、施加微扰的相空间区域以及微扰强度,来检验这种近似在量子映射中的有效性。我们表明,对于高度混沌的映射或强微扰,LDOS的半经典理论能够准确地描述量子分布。此外,在混合经典动力学的情况下,LDOS的宽度对于其半经典表达式也有很好的体现。