Perimeter Institute for Theoretical Physics, 31 Caroline Street North, N2L 2Y5, Waterloo, Ontario, Canada.
Phys Rev Lett. 2012 Jul 27;109(4):040502. doi: 10.1103/PhysRevLett.109.040502. Epub 2012 Jul 26.
Most states in the Hilbert space are maximally entangled. This fact has proven useful to investigate--among other things--the foundations of statistical mechanics. Unfortunately, most states in the Hilbert space of a quantum many-body system are not physically accessible. We define physical ensembles of states acting on random factorized states by a circuit of length k of random and independent unitaries with local support. We study the typicality of entanglement by means of the purity of the reduced state. We find that for a time k=O(1), the typical purity obeys the area law. Thus, the upper bounds for area law are actually saturated, on average, with a variance that goes to zero for large systems. Similarly, we prove that by means of local evolution a subsystem of linear dimensions L is typically entangled with a volume law when the time scales with the size of the subsystem. Moreover, we show that for large values of k the reduced state becomes very close to the completely mixed state.
大多数希尔伯特空间中的态都是最大纠缠的。这一事实已被证明在研究统计力学基础等方面非常有用。不幸的是,量子多体系统的希尔伯特空间中的大多数态在物理上是不可企及的。我们通过一个长度为 k 的随机和独立幺正元的电路,对作用于随机因子化态的物理态系综进行定义,这些幺正元具有局部支持。我们通过约化态的纯度来研究纠缠的典型性。我们发现,对于时间 k=O(1),典型的纯度满足面积定律。因此,平均而言,面积定律的上界实际上是饱和的,随着系统的增大,方差趋于零。同样,我们证明通过局部演化,当时间与子系统的大小成比例时,子系统的线度为 L 的线性维度通常具有体定律的纠缠。此外,我们表明,对于大的 k 值,约化态变得非常接近完全混合态。