Suppr超能文献

γ亚基构象的变化间接调节蓝细菌 F1-ATP 酶的活性。

A conformational change of the γ subunit indirectly regulates the activity of cyanobacterial F1-ATPase.

机构信息

Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama 226-8503, Japan.

出版信息

J Biol Chem. 2012 Nov 9;287(46):38695-704. doi: 10.1074/jbc.M112.395053. Epub 2012 Sep 25.

Abstract

The central shaft of the catalytic core of ATP synthase, the γ subunit consists of a coiled-coil structure of N- and C-terminal α-helices, and a globular domain. The γ subunit of cyanobacterial and chloroplast ATP synthase has a unique 30-40-amino acid insertion within the globular domain. We recently prepared the insertion-removed α(3)β(3)γ complex of cyanobacterial ATP synthase (Sunamura, E., Konno, H., Imashimizu-Kobayashi, M., and Hisabori, T. (2010) Plant Cell Physiol. 51, 855-865). Although the insertion is thought to be located in the periphery of the complex and far from catalytic sites, the mutant complex shows a remarkable increase in ATP hydrolysis activity due to a reduced tendency to lapse into ADP inhibition. We postulated that removal of the insertion affects the activity via a conformational change of two central α-helices in γ. To examine this hypothesis, we prepared a mutant complex that can lock the relative position of two central α-helices to each other by way of a disulfide bond formation. The mutant obtained showed a significant change in ATP hydrolysis activity caused by this restriction. The highly active locked complex was insensitive to N-dimethyldodecylamine-N-oxide, suggesting that the complex is resistant to ADP inhibition. In addition, the lock affected ε inhibition. In contrast, the change in activity caused by removal of the γ insertion was independent from the conformational restriction of the central axis component. These results imply that the global conformational change of the γ subunit indirectly regulates complex activity by changing both ADP inhibition and ε inhibition.

摘要

ATP 合酶催化核心的中心轴γ亚基由 N 端和 C 端α螺旋的卷曲螺旋结构和球状结构域组成。蓝细菌和叶绿体 ATP 合酶的γ亚基在球状结构域内有一个独特的 30-40 个氨基酸插入。我们最近制备了蓝细菌 ATP 合酶的插入缺失α(3)β(3)γ复合物(Sunamura,E.,Konno,H.,Imashimizu-Kobayashi,M.,和 Hisabori,T.(2010)植物细胞生理学。51,855-865)。虽然插入被认为位于复合物的外围且远离催化部位,但由于突变复合物向 ADP 抑制的倾向降低,其 ATP 水解活性显著增加。我们假设,该插入的缺失通过γ中的两个中心α-螺旋的构象变化来影响活性。为了检验这一假设,我们制备了一种突变复合物,通过形成二硫键来锁定两个中心α-螺旋之间的相对位置。获得的突变体表现出由于这种限制而导致的 ATP 水解活性的显著变化。这种高度活跃的锁定复合物对 N-二甲基十二烷基氧化胺-N-氧化物不敏感,表明该复合物对 ADP 抑制不敏感。此外,锁对ε抑制有影响。相比之下,γ插入缺失引起的活性变化与中心轴成分的构象限制无关。这些结果表明,γ亚基的全局构象变化通过改变 ADP 抑制和ε抑制间接调节复合物活性。

相似文献

1
A conformational change of the γ subunit indirectly regulates the activity of cyanobacterial F1-ATPase.
J Biol Chem. 2012 Nov 9;287(46):38695-704. doi: 10.1074/jbc.M112.395053. Epub 2012 Sep 25.
2
Redox regulation of rotation of the cyanobacterial F1-ATPase containing thiol regulation switch.
J Biol Chem. 2011 Mar 18;286(11):9071-8. doi: 10.1074/jbc.M110.200584. Epub 2010 Dec 30.
3
Redox regulation of CF1-ATPase involves interplay between the γ-subunit neck region and the turn region of the βDELSEED-loop.
Biochim Biophys Acta. 2015 Apr-May;1847(4-5):441-450. doi: 10.1016/j.bbabio.2015.01.013. Epub 2015 Feb 7.
4
Amputation of a C-terminal helix of the γ subunit increases ATP-hydrolysis activity of cyanobacterial F ATP synthase.
Biochim Biophys Acta Bioenerg. 2018 May;1859(5):319-325. doi: 10.1016/j.bbabio.2018.02.004. Epub 2018 Feb 19.
5
Characterization of the relationship between ADP- and epsilon-induced inhibition in cyanobacterial F1-ATPase.
J Biol Chem. 2011 Apr 15;286(15):13423-9. doi: 10.1074/jbc.M110.155986. Epub 2011 Feb 23.
6
The N-terminal region of the ϵ subunit from cyanobacterial ATP synthase alone can inhibit ATPase activity.
J Biol Chem. 2019 Jun 28;294(26):10094-10103. doi: 10.1074/jbc.RA118.007131. Epub 2019 May 8.
10
Regulation of the thermoalkaliphilic F1-ATPase from Caldalkalibacillus thermarum.
Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):10860-5. doi: 10.1073/pnas.1612035113. Epub 2016 Sep 12.

引用本文的文献

2
The N-terminal region of the ϵ subunit from cyanobacterial ATP synthase alone can inhibit ATPase activity.
J Biol Chem. 2019 Jun 28;294(26):10094-10103. doi: 10.1074/jbc.RA118.007131. Epub 2019 May 8.
3
Structure of a catalytic dimer of the α- and β-subunits of the F-ATPase from Paracoccus denitrificans at 2.3 Å resolution.
Acta Crystallogr F Struct Biol Commun. 2015 Oct;71(Pt 10):1309-17. doi: 10.1107/S2053230X15016076. Epub 2015 Sep 23.
5
Proteins with high turnover rate in barley leaves estimated by proteome analysis combined with in planta isotope labeling.
Plant Physiol. 2014 Sep;166(1):91-108. doi: 10.1104/pp.114.243014. Epub 2014 Jul 31.
6
The chloroplast ATP synthase features the characteristic redox regulation machinery.
Antioxid Redox Signal. 2013 Nov 20;19(15):1846-54. doi: 10.1089/ars.2012.5044. Epub 2013 Jan 3.

本文引用的文献

1
Inhibition of thermophilic F-ATPase by the ε subunit takes different path from the ADP-Mg inhibition.
Biophysics (Nagoya-shi). 2010 Dec 17;6:59-65. doi: 10.2142/biophysics.6.59. eCollection 2010.
3
Regulation of F0F1-ATPase from Synechocystis sp. PCC 6803 by gamma and epsilon subunits is significant for light/dark adaptation.
J Biol Chem. 2011 Jul 29;286(30):26595-602. doi: 10.1074/jbc.M111.234138. Epub 2011 May 24.
4
Structure of the ATP synthase catalytic complex (F(1)) from Escherichia coli in an autoinhibited conformation.
Nat Struct Mol Biol. 2011 Jun;18(6):701-7. doi: 10.1038/nsmb.2058. Epub 2011 May 22.
5
Characterization of the relationship between ADP- and epsilon-induced inhibition in cyanobacterial F1-ATPase.
J Biol Chem. 2011 Apr 15;286(15):13423-9. doi: 10.1074/jbc.M110.155986. Epub 2011 Feb 23.
6
Redox regulation of rotation of the cyanobacterial F1-ATPase containing thiol regulation switch.
J Biol Chem. 2011 Mar 18;286(11):9071-8. doi: 10.1074/jbc.M110.200584. Epub 2010 Dec 30.
7
Single molecule behavior of inhibited and active states of Escherichia coli ATP synthase F1 rotation.
J Biol Chem. 2010 Dec 31;285(53):42058-67. doi: 10.1074/jbc.M110.176701. Epub 2010 Oct 25.
9
Activation and stiffness of the inhibited states of F1-ATPase probed by single-molecule manipulation.
J Biol Chem. 2010 Apr 9;285(15):11411-7. doi: 10.1074/jbc.M109.099143. Epub 2010 Feb 12.
10
The role of the betaDELSEED-loop of ATP synthase.
J Biol Chem. 2009 Apr 24;284(17):11336-45. doi: 10.1074/jbc.M900374200. Epub 2009 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验