Suppr超能文献

M4 细胞的形态和功能,作为一种内在光敏感的视网膜神经节细胞类型,有助于视束-皮质视觉。

Form and function of the M4 cell, an intrinsically photosensitive retinal ganglion cell type contributing to geniculocortical vision.

机构信息

Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA.

出版信息

J Neurosci. 2012 Sep 26;32(39):13608-20. doi: 10.1523/JNEUROSCI.1422-12.2012.

Abstract

The photopigment melanopsin confers photosensitivity upon a minority of retinal output neurons. These intrinsically photosensitive retinal ganglion cells (ipRGCs) are more diverse than once believed, comprising five morphologically distinct types, M1 through M5. Here, in mouse retina, we provide the first in-depth characterization of M4 cells, including their structure, function, and central projections. M4 cells apparently correspond to ON α cells of earlier reports, and are easily distinguished from other ipRGCs by their very large somata. Their dendritic arbors are more radiate and highly branched than those of M1, M2, or M3 cells. The melanopsin-based intrinsic photocurrents of M4 cells are smaller than those of M1 and M2 cells, presumably because melanopsin is more weakly expressed; we can detect it immunohistochemically only with strong amplification. Like M2 cells, M4 cells exhibit robust, sustained, synaptically driven ON responses and dendritic stratification in the ON sublamina of the inner plexiform layer. However, their stratification patterns are subtly different, with M4 dendrites positioned just distal to those of M2 cells and just proximal to the ON cholinergic band. M4 receptive fields are large, with an ON center, antagonistic OFF surround and nonlinear spatial summation. Their synaptically driven photoresponses lack direction selectivity and show higher ultraviolet sensitivity in the ventral retina than in the dorsal retina, echoing the topographic gradient in S- and M-cone opsin expression. M4 cells are readily labeled by retrograde transport from the dorsal lateral geniculate nucleus and thus likely contribute to the pattern vision that persists in mice lacking functional rods and cones.

摘要

视色素黑素视蛋白赋予少数视网膜输出神经元光敏性。这些内在光敏视网膜神经节细胞(ipRGCs)比以前认为的更为多样化,包括 5 种形态不同的类型,M1 到 M5。在这里,我们在小鼠视网膜中首次对 M4 细胞进行了深入的特征描述,包括它们的结构、功能和中枢投射。M4 细胞显然对应于早期报道中的 ON α 细胞,并且通过其非常大的胞体很容易与其他 ipRGCs 区分开来。它们的树突分支比 M1、M2 或 M3 细胞更为辐射状和高度分支。M4 细胞的基于黑素视蛋白的内在光电流比 M1 和 M2 细胞小,可能是因为黑素视蛋白的表达较弱;我们只能通过强放大才能免疫组织化学检测到它。与 M2 细胞一样,M4 细胞表现出强烈、持续、突触驱动的 ON 反应和内丛状层 ON 亚层的树突分层。然而,它们的分层模式略有不同,M4 树突位于 M2 细胞的稍远端,而在 ON 胆碱能带的稍近端。M4 感受野较大,具有 ON 中心、拮抗 OFF 环绕和非线性空间总和。它们的突触驱动光反应缺乏方向选择性,并且在腹侧视网膜中的紫外线敏感性高于背侧视网膜,这与 S 和 M 视锥视蛋白表达的地形梯度相呼应。M4 细胞可以通过从背外侧膝状体的逆行运输很容易地被标记,因此可能有助于在缺乏功能性视杆和视锥的小鼠中存在的模式视觉。

相似文献

2
Functional and morphological differences among intrinsically photosensitive retinal ganglion cells.
J Neurosci. 2009 Jan 14;29(2):476-82. doi: 10.1523/JNEUROSCI.4117-08.2009.
3
M1 ipRGCs Influence Visual Function through Retrograde Signaling in the Retina.
J Neurosci. 2016 Jul 6;36(27):7184-97. doi: 10.1523/JNEUROSCI.3500-15.2016.
4
Spatial receptive fields in the retina and dorsal lateral geniculate nucleus of mice lacking rods and cones.
J Neurophysiol. 2015 Aug;114(2):1321-30. doi: 10.1152/jn.00368.2015. Epub 2015 Jun 17.
5
Photoresponse diversity among the five types of intrinsically photosensitive retinal ganglion cells.
J Physiol. 2014 Apr 1;592(7):1619-36. doi: 10.1113/jphysiol.2013.262782. Epub 2014 Jan 6.
6
7
Melanopsin ganglion cell outer retinal dendrites: Morphologically distinct and asymmetrically distributed in the mouse retina.
J Comp Neurol. 2017 Dec 1;525(17):3653-3665. doi: 10.1002/cne.24293. Epub 2017 Aug 12.
9
The M6 cell: A small-field bistratified photosensitive retinal ganglion cell.
J Comp Neurol. 2019 Jan 1;527(1):297-311. doi: 10.1002/cne.24556. Epub 2018 Nov 11.
10
The rat retina has five types of ganglion-cell photoreceptors.
Exp Eye Res. 2015 Jan;130:17-28. doi: 10.1016/j.exer.2014.11.010. Epub 2014 Nov 18.

引用本文的文献

1
Task-specific regional circuit adaptations in distinct mouse retinal ganglion cells.
Sci Adv. 2025 Apr 25;11(17):eadp7075. doi: 10.1126/sciadv.adp7075. Epub 2025 Apr 23.
2
Spatial distribution and functional integration of displaced retinal ganglion cells.
Sci Rep. 2025 Feb 28;15(1):7123. doi: 10.1038/s41598-025-91045-5.
4
Light-eye-body axis: exploring the network from retinal illumination to systemic regulation.
Theranostics. 2025 Jan 2;15(4):1496-1523. doi: 10.7150/thno.106589. eCollection 2025.
5
Specific retinal neurons regulate context-dependent defensive responses to visual threat.
PNAS Nexus. 2024 Sep 24;3(10):pgae423. doi: 10.1093/pnasnexus/pgae423. eCollection 2024 Oct.
6
Defining spatial nonuniformities of all ipRGC types using an improved Opn4 recombinase mouse line.
Cell Rep Methods. 2024 Aug 19;4(8):100837. doi: 10.1016/j.crmeth.2024.100837. Epub 2024 Aug 9.
7
Prefrontal cortex neurons encode ambient light intensity differentially across regions and layers.
Nat Commun. 2024 Jun 29;15(1):5501. doi: 10.1038/s41467-024-49794-w.
9
Flp-recombinase mouse line for genetic manipulation of ipRGCs.
bioRxiv. 2024 May 8:2024.05.06.592761. doi: 10.1101/2024.05.06.592761.
10
A new recombinase mouse line to target intrinsically photosensitive retinal ganglion cells (ipRGCs).
bioRxiv. 2024 Apr 20:2024.04.16.589750. doi: 10.1101/2024.04.16.589750.

本文引用的文献

1
Melanopsin-based brightness discrimination in mice and humans.
Curr Biol. 2012 Jun 19;22(12):1134-41. doi: 10.1016/j.cub.2012.04.039. Epub 2012 May 24.
5
Spectral and temporal sensitivity of cone-mediated responses in mouse retinal ganglion cells.
J Neurosci. 2011 May 25;31(21):7670-81. doi: 10.1523/JNEUROSCI.0629-11.2011.
8
Hyperpolarization-activated current (I(h)) in ganglion-cell photoreceptors.
PLoS One. 2010 Dec 20;5(12):e15344. doi: 10.1371/journal.pone.0015344.
9
Melanopsin contributions to irradiance coding in the thalamo-cortical visual system.
PLoS Biol. 2010 Dec 7;8(12):e1000558. doi: 10.1371/journal.pbio.1000558.
10
Differential cone pathway influence on intrinsically photosensitive retinal ganglion cell subtypes.
J Neurosci. 2010 Dec 1;30(48):16262-71. doi: 10.1523/JNEUROSCI.3656-10.2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验