Department of Radiology, VU University Medical Center, Amsterdam, The Netherlands.
Brain Connect. 2012;2(5):265-74. doi: 10.1089/brain.2012.0087.
Eigenvector centrality mapping (ECM) has recently emerged as a measure to spatially characterize connectivity in functional brain imaging by attributing network properties to voxels. The main obstacle for widespread use of ECM in functional magnetic resonance imaging (fMRI) is the cost of computing and storing the connectivity matrix. This article presents fast ECM (fECM), an efficient algorithm to estimate voxel-wise eigenvector centralities from fMRI time series. Instead of explicitly storing the connectivity matrix, fECM computes matrix-vector products directly from the data, achieving high accelerations for computing voxel-wise centralities in fMRI at standard resolutions for multivariate analyses, and enabling high-resolution analyses performed on standard hardware. We demonstrate the validity of fECM at cluster and voxel levels, using synthetic and in vivo data. Results from synthetic data are compared to the theoretical gold standard, and local centrality changes in fMRI data are measured after experimental intervention. A simple scheme is presented to generate time series with prescribed covariances that represent a connectivity matrix. These time series are used to construct a 4D dataset whose volumes consist of separate regions with known intra- and inter-regional connectivities. The fECM method is tested and validated on these synthetic data. Resting-state fMRI data acquired after real-versus-sham repetitive transcranial magnetic stimulation show fECM connectivity changes in resting-state network regions. A comparison of analyses with and without accounting for motion parameters demonstrates a moderate effect of these parameters on the centrality estimates. Its computational speed and statistical sensitivity make fECM a good candidate for connectivity analyses of multimodality and high-resolution functional neuroimaging data.
特征向量中心度映射(ECM)最近作为一种通过将网络属性归因于体素来空间描述功能脑成像连接性的度量方法而出现。在功能磁共振成像(fMRI)中广泛使用 ECM 的主要障碍是计算和存储连接矩阵的成本。本文提出了快速 ECM(fECM),这是一种从 fMRI 时间序列中估计体素特征向量中心度的有效算法。fECM 不是显式存储连接矩阵,而是直接从数据中计算矩阵向量乘积,在标准分辨率下为多元分析计算 fMRI 中的体素中心度时实现高加速,并能够在标准硬件上进行高分辨率分析。我们使用合成和体内数据在聚类和体素水平上证明了 fECM 的有效性。使用合成数据比较结果与理论黄金标准,并在实验干预后测量 fMRI 数据中的局部中心度变化。提出了一种简单的方案来生成具有规定协方差的时间序列,这些时间序列表示连接矩阵。这些时间序列用于构建一个 4D 数据集,其体积由具有已知内部和区域间连接的单独区域组成。该 fECM 方法在这些合成数据上进行了测试和验证。在真实与假重复经颅磁刺激后获得的静息态 fMRI 数据显示,静息态网络区域的 fECM 连接性发生变化。对考虑和不考虑运动参数的分析进行比较,证明这些参数对中心度估计有中等影响。其计算速度和统计灵敏度使 fECM 成为多模态和高分辨率功能神经影像学数据连接分析的良好候选者。