Suppr超能文献

利用相对响应因子方法评估气候变化对夏季臭氧的影响,为决策者提供参考。

Evaluating the effects of climate change on summertime ozone using a relative response factor approach for policymakers.

机构信息

Laboratory for Atmospheric Research, Washington State University, Pullman, WA 99164, USA.

出版信息

J Air Waste Manag Assoc. 2012 Sep;62(9):1061-74. doi: 10.1080/10962247.2012.696531.

Abstract

UNLABELLED

The impact of climate change on surface-level ozone is examined through a multiscale modeling effort that linked global and regional climate models to drive air quality model simulations. Results are quantified in terms of the relative response factor (RRF(E)), which estimates the relative change in peak ozone concentration for a given change in pollutant emissions (the subscript E is added to RRF to remind the reader that the RRF is due to emission changes only). A matrix of model simulations was conducted to examine the individual and combined effects offuture anthropogenic emissions, biogenic emissions, and climate on the RRF(E). For each member in the matrix of simulations the warmest and coolest summers were modeled for the present-day (1995-2004) and future (2045-2054) decades. A climate adjustment factor (CAF(C) or CAF(CB) when biogenic emissions are allowed to change with the future climate) was defined as the ratio of the average daily maximum 8-hr ozone simulated under a future climate to that simulated under the present-day climate, and a climate-adjusted RRF(EC) was calculated (RRF(EC) = RRF(E) x CAF(C)). In general, RRF(EC) > RRF(E), which suggests additional emission controls will be required to achieve the same reduction in ozone that would have been achieved in the absence of climate change. Changes in biogenic emissions generally have a smaller impact on the RRF(E) than does future climate change itself The direction of the biogenic effect appears closely linked to organic-nitrate chemistry and whether ozone formation is limited by volatile organic compounds (VOC) or oxides of nitrogen (NO(x) = NO + NO2). Regions that are generally NO(x) limited show a decrease in ozone and RRF(EC), while VOC-limited regions show an increase in ozone and RRF(EC). Comparing results to a previous study using different climate assumptions and models showed large variability in the CAF(CB).

IMPLICATIONS

We present a methodology for adjusting the RRF to account for the influence of climate change on ozone. The findings of this work suggest that in some geographic regions, climate change has the potential to negate decreases in surface ozone concentrations that would otherwise be achieved through ozone mitigation strategies. In regions of high biogenic VOC emissions relative to anthropogenic NO(x) emissions, the impact of climate change is somewhat reduced, while the opposite is true in regions of high anthropogenic NO(x) emissions relative to biogenic VOC emissions. Further, different future climate realizations are shown to impact ozone in different ways.

摘要

未加标签

通过将全球和区域气候模型与空气质量模型模拟联系起来的多尺度建模工作,研究了气候变化对地表臭氧的影响。结果以相对响应因子(RRF(E))来量化,该因子估计给定污染物排放变化时臭氧浓度峰值的相对变化(下标 E 添加到 RRF 以提醒读者 RRF 仅归因于排放变化)。进行了模型模拟矩阵,以检查未来人为排放、生物排放和气候对 RRF(E) 的单独和综合影响。对于模拟矩阵中的每个成员,模拟了当今(1995-2004 年)和未来(2045-2054 年)几十年的最温暖和最凉爽的夏季。气候调整因子(CAF(C)或允许生物排放随未来气候变化时的 CAF(CB))定义为未来气候下模拟的平均每日最大 8 小时臭氧与当今气候下模拟的平均每日最大 8 小时臭氧的比值,并且计算了气候调整后的 RRF(EC)(RRF(EC) = RRF(E) x CAF(C))。一般来说,RRF(EC) > RRF(E),这表明需要采取额外的排放控制措施来实现与在没有气候变化的情况下相同的臭氧减少。与未来气候变化本身相比,生物排放变化对 RRF(E)的影响通常较小。生物效应的方向似乎与有机硝酸盐化学密切相关,以及臭氧形成是否受到挥发性有机化合物(VOC)或氮氧化物(NO(x) = NO + NO2)的限制。通常受 NO(x)限制的区域显示臭氧和 RRF(EC)减少,而受 VOC 限制的区域显示臭氧和 RRF(EC)增加。将结果与使用不同气候假设和模型的先前研究进行比较表明,CAF(CB) 存在很大的可变性。

意义

我们提出了一种调整 RRF 以考虑气候变化对臭氧影响的方法。这项工作的结果表明,在某些地理区域,气候变化有可能抵消通过臭氧缓解策略本来会实现的地表臭氧浓度降低。在生物源 VOC 排放相对于人为 NO(x)排放较高的区域,气候变化的影响会有所降低,而在人为 NO(x)排放相对于生物源 VOC 排放较高的区域则相反。此外,不同的未来气候实现方式会以不同的方式影响臭氧。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验