Suppr超能文献

研究嗜泉古菌的酪氨酸酰基转移酶准确性的突变分析来自 Aeropyrum pernix 的酪氨酸 tRNA 合成酶和酪氨酸 tRNA。

Studies on crenarchaeal tyrosylation accuracy with mutational analyses of tyrosyl-tRNA synthetase and tyrosine tRNA from Aeropyrum pernix.

机构信息

Graduate School of Science and Engineering, Yamagata University, Yamagata, Yamagata 990-8560, Japan.

出版信息

J Biochem. 2012 Dec;152(6):539-48. doi: 10.1093/jb/mvs114. Epub 2012 Sep 29.

Abstract

Aminoacyl-tRNA synthetases play a key role in the translation of genetic code into correct protein sequences. These enzymes recognize cognate amino acids and tRNAs from noncognate counterparts, and catalyze the formation of aminoacyl-tRNAs. While Although several tyrosyl-tRNA synthetases (TyrRSs) from various species have been structurally and functionally well characterized, the crenarchaeal TyrRS remains poorly understood. In this study, we performed mutational analyses on tyrosine tRNA (tRNA(Tyr)) and TyrRS from the crenarchaeon, Aeropyrum pernix, to investigate the molecular recognition mechanism. Kinetics for tyrosylation using in vitro transcript indicated that the discriminator base A73 and adjacent G72 in the acceptor stem are identity elements of tRNA(Tyr), whereas the C1 base and anticodon had modest roles as identity determinants. Intriguingly, in contrast to the identity element of eukaryotic/euryarchaeal TyrRSs, the first base-pair (C1-G72) of the acceptor stem was not essential in crenarchaeal TyrRS as a pair. Furthermore, A. pernix TyrRS mutants were constructed at positions Tyr39 and Asp172, which could form hydrogen bonds with the 4-hydroxyl group of l-tyrosine. The tyrosylation activities with the mutants resulted that Asp172 mutants completely abolished tyrosylation activity, whereas Tyr39 mutants had no effect on activity. Thus, crenarchaeal TyrRS appears to adopt different molecular recognition mechanism from other TyrRSs.

摘要

氨酰-tRNA 合成酶在将遗传密码翻译成正确的蛋白质序列中起着关键作用。这些酶识别同源氨基酸和 tRNA 与非同源对应物,并催化氨酰-tRNA 的形成。虽然已经对来自各种物种的几种酪氨酸-tRNA 合成酶(TyrRS)进行了结构和功能的很好的表征,但古菌的 TyrRS 仍然知之甚少。在这项研究中,我们对来自古菌 Aeropyrum pernix 的酪氨酸 tRNA(tRNA(Tyr)) 和 TyrRS 进行了突变分析,以研究分子识别机制。使用体外转录进行的酪氨酸化动力学表明,在接受茎中的判别碱基 A73 和相邻的 G72 是 tRNA(Tyr)的身份元素,而 C1 碱基和反密码子具有作为身份决定因素的适度作用。有趣的是,与真核/古菌 TyrRSs 的身份元素相反,在古菌 TyrRS 中,接受茎的第一碱基对(C1-G72)不是必需的。此外,构建了在 Tyr39 和 Asp172 位置可以与 l-酪氨酸的 4-羟基形成氢键的 A. pernix TyrRS 突变体。突变体的酪氨酸化活性表明,Asp172 突变体完全丧失了酪氨酸化活性,而 Tyr39 突变体对活性没有影响。因此,古菌 TyrRS 似乎采用了与其他 TyrRS 不同的分子识别机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验