Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA.
Philos Trans A Math Phys Eng Sci. 2012 Nov 13;370(1978):5001-13. doi: 10.1098/rsta.2012.0101.
The most accurate electronic structure calculations are performed using wave function expansions in terms of basis functions explicitly dependent on the inter-electron distances. In our recent work, we use such basis functions to calculate a highly accurate potential energy surface (PES) for the H(3)(+) ion. The functions are explicitly correlated Gaussians, which include inter-electron distances in the exponent. Key to obtaining the high accuracy in the calculations has been the use of the analytical energy gradient determined with respect to the Gaussian exponential parameters in the minimization of the Rayleigh-Ritz variational energy functional. The effective elimination of linear dependences between the basis functions and the automatic adjustment of the positions of the Gaussian centres to the changing molecular geometry of the system are the keys to the success of the computational procedure. After adiabatic and relativistic corrections are added to the PES and with an effective accounting of the non-adiabatic effects in the calculation of the rotational/vibrational states, the experimental H(3)(+) rovibrational spectrum is reproduced at the 0.1 cm(-1) accuracy level up to 16,600 cm(-1) above the ground state.
最精确的电子结构计算是通过波函数展开来进行的,这些展开式是基于明确依赖于电子间距离的基函数。在我们最近的工作中,我们使用这种基函数来计算 H(3)(+)离子的高精度势能面 (PES)。这些函数是显式相关的高斯函数,其中包括指数中的电子间距离。在计算中获得高精度的关键是使用相对于高斯指数参数的解析能量梯度,在最小化瑞利-里茨变分能量泛函时。有效消除基函数之间的线性相关性,并自动调整高斯中心的位置以适应系统分子几何形状的变化,是计算程序成功的关键。在向 PES 添加绝热和相对论修正后,并在计算转动/振动态时有效考虑非绝热效应,实验 H(3)(+)转动振动光谱在 0.1 cm(-1)的精度水平上被重现,直到高于基态的 16600 cm(-1)。