Suppr超能文献

计算神经调节的 25 课。

Twenty-five lessons from computational neuromodulation.

机构信息

Gatsby Computational Neuroscience Unit, 17 Queen Square, London, UK.

出版信息

Neuron. 2012 Oct 4;76(1):240-56. doi: 10.1016/j.neuron.2012.09.027.

Abstract

Neural processing faces three rather different, and perniciously tied, communication problems. First, computation is radically distributed, yet point-to-point interconnections are limited. Second, the bulk of these connections are semantically uniform, lacking differentiation at their targets that could tag particular sorts of information. Third, the brain's structure is relatively fixed, and yet different sorts of input, forms of processing, and rules for determining the output are appropriate under different, and possibly rapidly changing, conditions. Neuromodulators address these problems by their multifarious and broad distribution, by enjoying specialized receptor types in partially specific anatomical arrangements, and by their ability to mold the activity and sensitivity of neurons and the strength and plasticity of their synapses. Here, I offer a computationally focused review of algorithmic and implementational motifs associated with neuromodulators, using decision making in the face of uncertainty as a running example.

摘要

神经处理面临着三个相当不同且相互关联的通信问题。首先,计算是彻底分布式的,但点对点的连接是有限的。其次,这些连接的大部分在语义上是统一的,它们的目标缺乏差异化,无法标记特定类型的信息。第三,大脑的结构相对固定,但不同类型的输入、处理形式和确定输出的规则在不同的、可能迅速变化的条件下是合适的。神经调质通过其多样化和广泛的分布、在部分特定解剖结构中具有专门的受体类型以及其改变神经元活动和敏感性以及突触强度和可塑性的能力来解决这些问题。在这里,我将使用面对不确定性时的决策作为示例,对与神经调质相关的算法和实现模式进行计算重点回顾。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验