Agriculture and Agri-Food Canada, Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, 1391 Sandford St., London, Ontario N5V 4T3, Canada.
J Exp Bot. 2012 Oct;63(17):6283-95. doi: 10.1093/jxb/ers280. Epub 2012 Oct 12.
The lack of phaseolin and phytohaemagglutinin in common bean (dry bean, Phaseolus vulgaris) is associated with an increase in total cysteine and methionine concentrations by 70% and 10%, respectively, mainly at the expense of an abundant non-protein amino acid, S-methyl-cysteine. Transcripts were profiled between two genetically related lines differing for this trait at four stages of seed development using a high density microarray designed for common bean. Transcripts of multiple sulphur-rich proteins were elevated, several previously identified by proteomics, including legumin, basic 7S globulin, albumin-2, defensin, albumin-1, the Bowman-Birk type proteinase inhibitor, the double-headed trypsin inhibitor, and the Kunitz trypsin inhibitor. A co-ordinated regulation of transcripts coding for sulphate transporters, sulphate assimilatory enzymes, serine acetyltransferases, cystathionine β-lyase, homocysteine S-methyltransferase and methionine gamma-lyase was associated with changes in cysteine and methionine concentrations. Differential gene expression of sulphur-rich proteins preceded that of sulphur metabolic enzymes, suggesting a regulation by demand from the protein sink. Up-regulation of SERAT1;1 and -1;2 expression revealed an activation of cytosolic O-acetylserine biosynthesis. Down-regulation of SERAT2;1 suggested that cysteine and S-methyl-cysteine biosynthesis may be spatially separated in different subcellular compartments. Analysis of free amino acid profiles indicated that enhanced cysteine biosynthesis was correlated with a depletion of O-acetylserine. These results contribute to our understanding of the regulation of sulphur metabolism in developing seed in response to a change in the composition of endogenous proteins.
菜豆(干豆,Phaseolus vulgaris)中缺少伴球蛋白和植物血凝素与总半胱氨酸和蛋氨酸浓度分别增加 70%和 10%有关,这主要是由于大量非蛋白氨基酸 S-甲基半胱氨酸的消耗。在种子发育的四个阶段,利用为普通菜豆设计的高密度微阵列,在两个遗传相关的系之间对具有这种特性的差异进行了转录谱分析。多个富含硫的蛋白质的转录本升高,其中一些以前通过蛋白质组学鉴定,包括豆球蛋白、碱性 7S 球蛋白、白蛋白-2、防御素、白蛋白-1、Bowman-Birk 型蛋白酶抑制剂、双头胰蛋白酶抑制剂和 Kunitz 胰蛋白酶抑制剂。编码硫酸盐转运蛋白、硫酸盐同化酶、丝氨酸乙酰转移酶、半胱氨酸 β-裂合酶、高半胱氨酸 S-甲基转移酶和蛋氨酸 γ-裂合酶的转录物的协调调节与半胱氨酸和蛋氨酸浓度的变化有关。富含硫的蛋白质的差异基因表达先于硫代谢酶的表达,表明这是由蛋白质库的需求调节的。SERAT1;1 和 -1;2 表达的上调揭示了细胞质 O-乙酰丝氨酸生物合成的激活。SERAT2;1 的下调表明,半胱氨酸和 S-甲基半胱氨酸的生物合成可能在不同的亚细胞隔室中空间分离。游离氨基酸谱分析表明,增强的半胱氨酸生物合成与 O-乙酰丝氨酸的耗尽有关。这些结果有助于我们理解在响应内源蛋白质组成变化时,发育中的种子中硫代谢的调节。