Suppr超能文献

氧对颈上交感神经节中磷酸二酯酶(PDE)3 和 4 同工型和蛋白激酶 A 活性的影响。

Effect of oxygen on phosphodiesterases (PDE) 3 and 4 isoforms and PKA activity in the superior cervical ganglia.

机构信息

Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21287-3200, USA.

出版信息

Adv Exp Med Biol. 2012;758:287-94. doi: 10.1007/978-94-007-4584-1_39.

Abstract

UNLABELLED

The cAMP-protein kinase A (PKA) signaling pathway is involved in regulating the release of transmitters from neurons and other cells. Multiple phosphodiesterase (PDE) isoforms regulate this pathway, however, the pattern of isoform expression and stimulus response across tissues has not been fully characterized.Using fluorescent resonance energy transfer (FRET)-based imaging in primary superior cervical ganglia (SCG) neurons and real-time qPCR, we explored the role of PDE3 and PDE4 isoforms and oxygen tension in the activation of PKA and changes in gene expression. These primary neurons were infected with an adenovirus containing A-Kinase activity reporter (AKAR3) and assayed for responses to PDE inhibitors: rolipram (ROL, 1 μM), milrinone (MIL, 10 μM) and IBMX (100 μM), and adenylyl cyclase activator forskolin (FSK, 50 μM). Different PDE activity patterns were observed in different cells: high PDE4 activity (n = 3), high PDE3 activity (n = 3) and presence of activity of other PDEs (n = 3). Addition of PKA inhibitor H89 (10 μM) completely reversed the response. We further studied the effect of oxygen in the PKA activity induced by PDE inhibition. Both normoxia (20%O(2)/5%CO(2)) and hypoxia (0%O(2)/5%CO(2)) induced a similar increase in the FRET emission ratio (14.5 ± 0.8 and 14.7 ± 0.8, respectively).PDE3a, PDE4b and PDE4d isoforms mRNAs were highly expressed in the whole SCG with no modulation by hypoxia.

CONCLUSION

Using a FRET-based PKA activity sensor, we show that primary SCG neurons can be used as a model system to dissect the contribution of different PDE isoforms in regulating cAMP/PKA signaling. The differential patterns of PDE regulation potentially represent subpopulations of ganglion cells with different physiological functions.

摘要

未加标签

cAMP-蛋白激酶 A(PKA)信号通路参与调节神经元和其他细胞中递质的释放。多种磷酸二酯酶(PDE)同工型调节该途径,然而,同工型表达的模式和刺激反应在组织中的情况尚未完全确定。

我们使用荧光共振能量转移(FRET)为基础的成像在原代颈上交感神经节(SCG)神经元和实时 qPCR 中,研究了 PDE3 和 PDE4 同工型和氧张力在 PKA 激活和基因表达变化中的作用。这些原代神经元被含有 A-Kinase 活性报告器(AKAR3)的腺病毒感染,并对 PDE 抑制剂的反应进行了检测:rolipram(ROL,1μM)、milrinone(MIL,10μM)和 IBMX(100μM)以及腺苷酸环化酶激活剂 forskolin(FSK,50μM)。在不同的细胞中观察到不同的 PDE 活性模式:高 PDE4 活性(n=3)、高 PDE3 活性(n=3)和存在其他 PDE 的活性(n=3)。加入 PKA 抑制剂 H89(10μM)完全逆转了反应。我们进一步研究了 PDE 抑制诱导的 PKA 活性中氧的影响。常氧(20%O2/5%CO2)和缺氧(0%O2/5%CO2)均诱导 FRET 发射比相似增加(分别为 14.5±0.8 和 14.7±0.8)。PDE3a、PDE4b 和 PDE4d 同工型的 mRNA 在整个 SCG 中高度表达,缺氧对其没有调节。

结论

使用基于 FRET 的 PKA 活性传感器,我们表明原代 SCG 神经元可用作模型系统来剖析不同 PDE 同工型在调节 cAMP/PKA 信号中的贡献。PDE 调节的差异模式可能代表具有不同生理功能的神经节细胞的亚群。

相似文献

2
Basal Spontaneous Firing of Rabbit Sinoatrial Node Cells Is Regulated by Dual Activation of PDEs (Phosphodiesterases) 3 and 4.
Circ Arrhythm Electrophysiol. 2018 Jun;11(6):e005896. doi: 10.1161/CIRCEP.117.005896.
3
PKA-dependent activation of PDE3A and PDE4 and inhibition of adenylyl cyclase V/VI in smooth muscle.
Am J Physiol Cell Physiol. 2002 Mar;282(3):C508-17. doi: 10.1152/ajpcell.00373.2001.
5
Interaction between phosphodiesterases in the regulation of the cardiac β-adrenergic pathway.
J Mol Cell Cardiol. 2015 Nov;88:29-38. doi: 10.1016/j.yjmcc.2015.09.011. Epub 2015 Sep 23.
6
PDE4 and PDE5 regulate cyclic nucleotides relaxing effects in human umbilical arteries.
Eur J Pharmacol. 2008 Mar 17;582(1-3):102-9. doi: 10.1016/j.ejphar.2007.12.017. Epub 2007 Dec 28.
7
The role of the PDE4D cAMP phosphodiesterase in the regulation of glucagon-like peptide-1 release.
Br J Pharmacol. 2009 Jun;157(4):633-44. doi: 10.1111/j.1476-5381.2009.00194.x. Epub 2009 Apr 9.
8
Regulation by phosphodiesterase isoforms of protein kinase A-mediated attenuation of myocardial protein kinase D activation.
Basic Res Cardiol. 2011 Jan;106(1):51-63. doi: 10.1007/s00395-010-0116-1. Epub 2010 Aug 20.

引用本文的文献

1
Phosphodiesterase 3 A expression in gastrointestinal stromal tumors.
Virchows Arch. 2025 Jun 18. doi: 10.1007/s00428-025-04150-1.
2
The superior cervical ganglia modulate ventilatory responses to hypoxia independently of preganglionic drive from the cervical sympathetic chain.
J Appl Physiol (1985). 2021 Aug 1;131(2):836-857. doi: 10.1152/japplphysiol.00216.2021. Epub 2021 Jul 1.
4
Effect of Mitochondrial Antioxidant (Mito-TEMPO) on Burn-Induced Cardiac Dysfunction.
J Am Coll Surg. 2021 Apr;232(4):642-655. doi: 10.1016/j.jamcollsurg.2020.11.031. Epub 2021 Jan 7.
6
Dysregulation of Neuronal Ca2+ Channel Linked to Heightened Sympathetic Phenotype in Prohypertensive States.
J Neurosci. 2016 Aug 17;36(33):8562-73. doi: 10.1523/JNEUROSCI.1059-16.2016.
8
Genetically encoded fluorescent biosensors for live-cell visualization of protein phosphorylation.
Chem Biol. 2014 Feb 20;21(2):186-97. doi: 10.1016/j.chembiol.2013.12.012. Epub 2014 Jan 30.
9
Inhibition of endogenous phosphodiesterase 7 promotes oligodendrocyte precursor differentiation and survival.
Cell Mol Life Sci. 2013 Sep;70(18):3449-62. doi: 10.1007/s00018-013-1340-2. Epub 2013 May 10.

本文引用的文献

1
Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues.
Neuropharmacology. 2010 Nov;59(6):367-74. doi: 10.1016/j.neuropharm.2010.05.004. Epub 2010 May 21.
3
Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use.
Pharmacol Rev. 2006 Sep;58(3):488-520. doi: 10.1124/pr.58.3.5.
4
Physiological classification of sympathetic neurons in the rat superior cervical ganglion.
J Neurophysiol. 2006 Jan;95(1):187-95. doi: 10.1152/jn.00779.2005. Epub 2005 Sep 21.
5
Network of the sympathetic nervous system: focus on the input and output of the cervical sympathetic ganglion.
Anat Sci Int. 2005 Sep;80(3):132-40. doi: 10.1111/j.1447-073x.2005.00107.x.
7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验