Suppr超能文献

具有预定义规则用于修改样本量的适应性临床试验设计:理解有效的适应性类型。

Adaptive clinical trial designs with pre-specified rules for modifying the sample size: understanding efficient types of adaptation.

机构信息

Department of Biostatistics, University of Washington, Seattle, WA 98195, USA.

出版信息

Stat Med. 2013 Apr 15;32(8):1259-75; discussion 1280-2. doi: 10.1002/sim.5662. Epub 2012 Oct 19.

Abstract

Adaptive clinical trial design has been proposed as a promising new approach that may improve the drug discovery process. Proponents of adaptive sample size re-estimation promote its ability to avoid 'up-front' commitment of resources, better address the complicated decisions faced by data monitoring committees, and minimize accrual to studies having delayed ascertainment of outcomes. We investigate aspects of adaptation rules, such as timing of the adaptation analysis and magnitude of sample size adjustment, that lead to greater or lesser statistical efficiency. Owing in part to the recent Food and Drug Administration guidance that promotes the use of pre-specified sampling plans, we evaluate alternative approaches in the context of well-defined, pre-specified adaptation. We quantify the relative costs and benefits of fixed sample, group sequential, and pre-specified adaptive designs with respect to standard operating characteristics such as type I error, maximal sample size, power, and expected sample size under a range of alternatives. Our results build on others' prior research by demonstrating in realistic settings that simple and easily implemented pre-specified adaptive designs provide only very small efficiency gains over group sequential designs with the same number of analyses. In addition, we describe optimal rules for modifying the sample size, providing efficient adaptation boundaries on a variety of scales for the interim test statistic for adaptation analyses occurring at several different stages of the trial. We thus provide insight into what are good and bad choices of adaptive sampling plans when the added flexibility of adaptive designs is desired.

摘要

适应性临床试验设计被提议为一种有前途的新方法,可能会改进药物发现过程。自适应样本量重新估计的支持者提倡其避免“预先”承诺资源的能力,更好地解决数据监测委员会面临的复杂决策,并最大限度地减少对结果延迟确定的研究的累积。我们研究了适应性规则的各个方面,例如适应性分析的时间和样本量调整的幅度,这些方面会导致更大或更小的统计效率。部分由于最近食品和药物管理局的指导意见提倡使用预先指定的抽样计划,我们在明确规定的适应性背景下评估了替代方法。我们根据标准操作特性(如 I 类错误、最大样本量、功效和预期样本量),针对固定样本量、分组序贯和预先指定的适应性设计,量化了相对于固定样本量设计的相对成本和收益,这些设计具有不同的替代方案。我们的结果建立在其他人之前的研究基础上,通过在现实环境中证明,对于具有相同分析次数的分组序贯设计,简单且易于实施的预先指定适应性设计仅提供非常小的效率增益。此外,我们还描述了修改样本量的最佳规则,为各种规模的中间测试统计量提供了有效的适应性边界,这些边界适用于试验不同阶段的多次适应性分析。因此,当需要适应性设计的灵活性时,我们提供了有关适应性抽样计划的好坏选择的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验