Suppr超能文献

原位插层膨胀石墨制备介孔碳/石墨纳米片复合材料作为高性能超级电容器电极。

In Situ intercalating expandable graphite for mesoporous carbon/graphite nanosheet composites as high-performance supercapacitor electrodes.

机构信息

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China.

出版信息

ChemSusChem. 2012 Dec;5(12):2442-50. doi: 10.1002/cssc.201200529. Epub 2012 Oct 18.

Abstract

Mesoporous-carbon-coated graphite nanosheet (GNS@MC) composites have been synthesized by the intercalation of resol prepolymer into the interlayers of expandable graphite (EG) under vacuum-assisted conditions, followed by the exfoliation of EG through in situ polymerization, the growth of resol under hydrothermal conditions, and carbonization under Ar. The GNS@MC composites exhibit enhanced capacitive performance compared to mesoporous carbon (MC), microwaved EG after thermal treatment (T-EG), and the physical mixture of MC and T-EG (MC+T-EG). In particular, the GNS@MC-35-800 composite carbonized at 800 °C, which has a graphite-nanosheet content of 35 % and a Brunauer-Emmett-Teller surface area (S(BET) ) of 432.3 m(2)  g(-1) , exhibits the highest capacitance of 203 F g(-1) at 1 A g(-1) in 6 M KOH electrolyte. Furthermore, the GNS@MC-35-800 composite exhibits a good cyclic stability with 95 % capacitance retention and a high columbic efficiency of 99 % after 5000 cycles. The energy density of the symmetric supercapacitor GNS@MC-35-800/GNS@MC-35-800 achieved was as high as 11.5 Wh kg(-1) at a high power density of 10 kW kg(-1) . This good performance is attributable to the GNSs in the GNS@MC composite facilitating electron transport owing to its excellent conductivity; moreover, the MC in GNS@MC favors the rapid diffusion of ions by providing low-resistance pathways. The GNS@MC composite may find application in high-performance energy storage and conversion devices.

摘要

介孔碳包覆石墨纳米片(GNS@MC)复合材料是通过在真空辅助条件下将酚醛树脂预聚物插入可膨胀石墨(EG)的层间,然后通过原位聚合剥离 EG,在水热条件下生长酚醛树脂,以及在 Ar 下碳化来合成的。与介孔碳(MC)、微波处理后的 EG(T-EG)和 MC 与 T-EG 的物理混合物(MC+T-EG)相比,GNS@MC 复合材料表现出增强的电容性能。特别是,在 800°C 碳化的 GNS@MC-35-800 复合碳,石墨纳米片含量为 35%,BET 比表面积(S(BET))为 432.3 m(2)  g(-1),在 6 M KOH 电解质中,在 1 A g(-1)的电流密度下表现出 203 F g(-1)的最高电容。此外,GNS@MC-35-800 复合材料在 5000 次循环后具有 95%的电容保持率和 99%的高库仑效率,表现出良好的循环稳定性。对称超级电容器 GNS@MC-35-800/GNS@MC-35-800 的能量密度在 10 kW kg(-1)的高功率密度下高达 11.5 Wh kg(-1)。这种良好的性能归因于 GNS@MC 复合材料中的 GNS 由于其优异的导电性而促进电子传输;此外,GNS@MC 中的 MC 通过提供低电阻路径有利于离子的快速扩散。GNS@MC 复合材料可能在高性能储能和转换器件中得到应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验