Institut für Organische Chemie, Universität Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany.
Chemistry. 2012 Dec 14;18(51):16358-68. doi: 10.1002/chem.201201698. Epub 2012 Oct 22.
The bistability of spin states (e.g., spin crossover) in bulk materials is well investigated and understood. We recently extended spin-state switching to isolated molecules at room temperature (light-driven coordination-induced spin-state switching, or LD-CISSS). Whereas bistability and hysteresis in conventional spin-crossover materials are caused by cooperative effects in the crystal lattice, spin switching in LD-CISSS is achieved by reversibly changing the coordination number of a metal complex by means of a photochromic ligand that binds in one configuration but dissociates in the other form. We present mathematical proof that the maximum efficiency in property switching by such a photodissociable ligand (PDL) is only dependent on the ratio of the association constants of both configurations. Rational design by using DFT calculations was applied to develop a photoswitchable ligand with a high switching efficiency. The starting point was a nickel-porphyrin as the transition-metal complex and 3-phenylazopyridine as the photodissociable ligand. Calculations and experiments were performed in two iterative steps to find a substitution pattern at the phenylazopyridine ligand that provided optimum performance. Following this strategy, we synthesized an improved photodissociable ligand that binds to the Ni-porphyrin with an association constant that is 5.36 times higher in its trans form than in the cis form. The switching efficiency between the diamagnetic and paramagnetic state is efficient as well (72% paramagnetic Ni-porphyrin after irradiation at 365 nm, 32% paramagnetic species after irradiation at 440 nm). Potential applications arise from the fact that the LD-CISSS approach for the first time allows reversible switching of the magnetic susceptibility of a homogeneous solution. Photoswitchable contrast agents for magnetic resonance imaging and light-controlled magnetic levitation are conceivable applications.
自旋态(例如,自旋交叉)的双稳性在块状材料中得到了很好的研究和理解。我们最近将自旋态切换扩展到了室温下的孤立分子(光驱动配位诱导自旋态切换,或 LD-CISSS)。虽然传统自旋交叉材料中的双稳性和滞后性是由晶格中的协同效应引起的,但 LD-CISSS 中的自旋切换是通过可逆地改变金属配合物的配位数来实现的,这种变化是通过光致变色配体来实现的,该配体在一种构象中结合,但在另一种形式中解离。我们提供了数学证明,证明这种光离解配体(PDL)在性质切换中的最大效率仅取决于两种构象的结合常数之比。通过使用密度泛函理论(DFT)计算进行合理设计,开发出了一种具有高切换效率的光致开关配体。该方法的起点是镍卟啉作为过渡金属配合物和 3-苯基偶氮吡啶作为光离解配体。计算和实验分两个迭代步骤进行,以找到一种在苯基偶氮吡啶配体上的取代模式,以提供最佳性能。根据这一策略,我们合成了一种改进的光离解配体,它与 Ni-卟啉的结合常数在其反式构象中比顺式构象高 5.36 倍。顺磁和(paramagnetic)状态之间的切换效率也很高(在 365nm 照射下,有 72%的顺磁 Ni-卟啉,在 440nm 照射下,有 32%的顺磁物种)。这种方法的潜在应用源于这样一个事实,即 LD-CISSS 方法首次允许对均匀溶液的磁化率进行可逆切换。可以设想使用光致开关对比剂进行磁共振成像和光控磁悬浮。