Suppr超能文献

统计检验用于检测与基因变异组的关联:推广、评估和实施。

Statistical tests for detecting associations with groups of genetic variants: generalization, evaluation, and implementation.

机构信息

Division of Biostatistics, Yale School of Public Health, New Haven, CT, USA.

出版信息

Eur J Hum Genet. 2013 Jun;21(6):680-6. doi: 10.1038/ejhg.2012.220. Epub 2012 Oct 24.

Abstract

With recent advances in sequencing, genotyping arrays, and imputation, GWAS now aim to identify associations with rare and uncommon genetic variants. Here, we describe and evaluate a class of statistics, generalized score statistics (GSS), that can test for an association between a group of genetic variants and a phenotype. GSS are a simple weighted sum of single-variant statistics and their cross-products. We show that the majority of statistics currently used to detect associations with rare variants are equivalent to choosing a specific set of weights within this framework. We then evaluate the power of various weighting schemes as a function of variant characteristics, such as MAF, the proportion associated with the phenotype, and the direction of effect. Ultimately, we find that two classical tests are robust and powerful, but details are provided as to when other GSS may perform favorably. The software package CRaVe is available at our website (http://dceg.cancer.gov/bb/tools/crave).

摘要

随着测序、基因分型阵列和插补技术的最新进展,GWAS 现在旨在识别与罕见和常见遗传变异的关联。在这里,我们描述并评估了一类统计量,广义得分统计量(GSS),它可以测试一组遗传变异与表型之间的关联。GSS 是单变量统计量及其交叉乘积的简单加权和。我们表明,目前用于检测与罕见变异关联的大多数统计量都等效于在该框架内选择一组特定的权重。然后,我们根据变异特征(例如 MAF、与表型相关的比例和效应方向)评估各种加权方案的功效。最终,我们发现两种经典测试是稳健且强大的,但也提供了有关何时其他 GSS 可能表现良好的详细信息。软件包 CRaVe 可在我们的网站(http://dceg.cancer.gov/bb/tools/crave)上获得。

相似文献

1
Statistical tests for detecting associations with groups of genetic variants: generalization, evaluation, and implementation.
Eur J Hum Genet. 2013 Jun;21(6):680-6. doi: 10.1038/ejhg.2012.220. Epub 2012 Oct 24.
2
A gene based combination test using GWAS summary data.
BMC Bioinformatics. 2023 Jan 3;24(1):2. doi: 10.1186/s12859-022-05114-x.
4
Meta-analysis of gene-level associations for rare variants based on single-variant statistics.
Am J Hum Genet. 2013 Aug 8;93(2):236-48. doi: 10.1016/j.ajhg.2013.06.011. Epub 2013 Jul 25.
5
Weighted pedigree-based statistics for testing the association of rare variants.
BMC Genomics. 2012 Nov 24;13:667. doi: 10.1186/1471-2164-13-667.
6
Effect of genome-wide genotyping and reference panels on rare variants imputation.
J Genet Genomics. 2012 Oct 20;39(10):545-50. doi: 10.1016/j.jgg.2012.07.002. Epub 2012 Jul 24.
8
Are rare variants really independent?
Genet Epidemiol. 2017 May;41(4):363-371. doi: 10.1002/gepi.22039. Epub 2017 Mar 16.
10
Interpreting de novo Variation in Human Disease Using denovolyzeR.
Curr Protoc Hum Genet. 2015 Oct 6;87:7.25.1-7.25.15. doi: 10.1002/0471142905.hg0725s87.

本文引用的文献

1
Evaluating methods for the analysis of rare variants in sequence data.
BMC Proc. 2011 Nov 29;5 Suppl 9(Suppl 9):S119. doi: 10.1186/1753-6561-5-S9-S119.
2
Multilocus association testing with penalized regression.
Genet Epidemiol. 2011 Dec;35(8):755-65. doi: 10.1002/gepi.20625. Epub 2011 Sep 15.
3
A general framework for detecting disease associations with rare variants in sequencing studies.
Am J Hum Genet. 2011 Sep 9;89(3):354-67. doi: 10.1016/j.ajhg.2011.07.015. Epub 2011 Sep 1.
4
Rare-variant association testing for sequencing data with the sequence kernel association test.
Am J Hum Genet. 2011 Jul 15;89(1):82-93. doi: 10.1016/j.ajhg.2011.05.029. Epub 2011 Jul 7.
5
Testing for an unusual distribution of rare variants.
PLoS Genet. 2011 Mar;7(3):e1001322. doi: 10.1371/journal.pgen.1001322. Epub 2011 Mar 3.
6
A new testing strategy to identify rare variants with either risk or protective effect on disease.
PLoS Genet. 2011 Feb 3;7(2):e1001289. doi: 10.1371/journal.pgen.1001289.
7
Comprehensive approach to analyzing rare genetic variants.
PLoS One. 2010 Nov 3;5(11):e13584. doi: 10.1371/journal.pone.0013584.
8
A map of human genome variation from population-scale sequencing.
Nature. 2010 Oct 28;467(7319):1061-73. doi: 10.1038/nature09534.
10
A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.
Nat Genet. 2010 Nov;42(11):978-84. doi: 10.1038/ng.687. Epub 2010 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验