Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia.
Epilepsy Behav. 2013 Mar;26(3):229-33. doi: 10.1016/j.yebeh.2012.09.007. Epub 2012 Oct 26.
With no known intervention to prevent or cure epilepsy, treatment is primarily symptomatic and requires long-term administration of medications to suppress seizure occurrence. Current antiepileptic drugs (AEDs) are ineffective in one-third of patients (Kwan and Brodie, 2000). Such therapeutic inadequacy is largely due to our insufficient understanding of the basic molecular pathophysiological processes that underlie epileptogenesis. Breakthroughs are needed in the identification of new molecular targets that will translate to novel intervention approaches. Discovering genetic variants that increase the susceptibility to disease is a promising avenue to identifying such targets. However, early candidate gene-based studies in epilepsy proved ineffective in identifying genetic risk factors for the non-Mendelian, complex epilepsies, which represent >95% of clinically encountered epilepsy. Furthermore, genome-wide association studies (GWAS) of epilepsy patients have been largely negative, with the exception of several putative susceptibility loci discovered in Han Chinese focal epilepsy and European Caucasian GGE patients (Kasperaviciute et al., 2010; Guo et al., 2012; Consortium et al., 2012). Results of these GWAS suggest that, similar to other common diseases, associations with common single nucleotide variants (SNV) appear likely to account for a small fraction of the heritability of epilepsy, thus fuelling the effort to also search for alternative genetic contributors, with a recent increased emphasis on rare variants with larger effects (Manolio et al., 2009). It is possible that both common and rare variants contribute to an increased susceptibility to common epilepsy syndromes (Mulley et al., 2005). We review the approaches that have been taken to identify genetic risk markers of the common epilepsy syndromes, the experimental platforms, and their caveats. We discuss current technologies and analytical frameworks that might expedite the discovery of these variants by leveraging advances in microarray-based, high-throughput, genotyping technology, and complementary interdisciplinary expertise of study teams including the need for meta-analyses under global collaborative frameworks. We briefly discuss the analytical options made available through rapid advances in sequencing and other genomic technologies.
由于目前尚无预防或治疗癫痫的干预措施,治疗主要是对症治疗,需要长期服用药物来抑制癫痫发作。目前的抗癫痫药物(AEDs)在三分之一的患者中无效(Kwan 和 Brodie,2000)。这种治疗不足主要是由于我们对导致癫痫发生的基本分子病理生理过程了解不足。需要在识别新的分子靶点方面取得突破,这些靶点将转化为新的干预方法。发现增加疾病易感性的遗传变异是识别这些靶点的一个有前途的途径。然而,在癫痫中早期基于候选基因的研究未能有效识别非孟德尔、复杂癫痫的遗传风险因素,这些癫痫占临床遇到的癫痫的>95%。此外,对癫痫患者的全基因组关联研究(GWAS)大多为阴性,除了在汉族局灶性癫痫和欧洲白种人 GGE 患者中发现的几个假定易感性位点(Kasperaviciute 等人,2010;Guo 等人,2012;Consortium 等人,2012)。这些 GWAS 的结果表明,与其他常见疾病类似,与常见单核苷酸变异(SNV)的关联似乎可能解释癫痫遗传力的一小部分,从而推动了寻找替代遗传贡献者的努力,最近越来越强调具有更大影响的罕见变异(Manolio 等人,2009)。常见和罕见变异都可能导致常见癫痫综合征的易感性增加(Mulley 等人,2005)。我们回顾了用于识别常见癫痫综合征遗传风险标志物的方法、实验平台及其注意事项。我们讨论了当前的技术和分析框架,这些技术和分析框架可以通过利用基于微阵列的高通量基因分型技术的进步以及包括需要在全球合作框架下进行荟萃分析的研究团队的互补跨学科专业知识,加速这些变体的发现。我们简要讨论了通过快速发展的测序和其他基因组技术提供的分析选择。