Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Cluster of Excellence REBIRTH, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
Eur Heart J. 2013 Apr;34(15):1134-46. doi: 10.1093/eurheartj/ehs349. Epub 2012 Oct 26.
We explored the use of highly purified murine and human pluripotent stem cell (PSC)-derived cardiomyocytes (CMs) to generate functional bioartificial cardiac tissue (BCT) and investigated the role of fibroblasts, ascorbic acid (AA), and mechanical stimuli on tissue formation, maturation, and functionality.
Murine and human embryonic/induced PSC-derived CMs were genetically enriched to generate three-dimensional CM aggregates, termed cardiac bodies (CBs). Addressing the critical limitation of major CM loss after single-cell dissociation, non-dissociated CBs were used for BCT generation, which resulted in a structurally and functionally homogenous syncytium. Continuous in situ characterization of BCTs, for 21 days, revealed that three critical factors cooperatively improve BCT formation and function: both (i) addition of fibroblasts and (ii) ascorbic acid supplementation support extracellular matrix remodelling and CB fusion, and (iii) increasing static stretch supports sarcomere alignment and CM coupling. All factors together considerably enhanced the contractility of murine and human BCTs, leading to a so far unparalleled active tension of 4.4 mN/mm(2) in human BCTs using optimized conditions. Finally, advanced protocols were implemented for the generation of human PSC-derived cardiac tissue using a defined animal-free matrix composition.
BCT with contractile forces comparable with native myocardium can be generated from enriched, PSC-derived CMs, based on a novel concept of tissue formation from non-dissociated cardiac cell aggregates. In combination with the successful generation of tissue using a defined animal-free matrix, this represents a major step towards clinical applicability of stem cell-based heart tissue for myocardial repair.
我们探索了使用高度纯化的鼠和人多能干细胞(PSC)衍生的心肌细胞(CM)来生成功能性生物人工心脏组织(BCT),并研究了成纤维细胞、抗坏血酸(AA)和机械刺激对组织形成、成熟和功能的作用。
对鼠和人胚胎/诱导 PSC 衍生的 CM 进行基因富集,以生成三维 CM 聚集体,称为心脏体(CB)。针对单细胞解离后 CM 大量丢失的关键限制,使用未解离的 CB 来生成 BCT,从而产生结构和功能均一的合胞体。连续原位分析 BCT 21 天,结果表明三个关键因素协同改善 BCT 的形成和功能:(i)添加成纤维细胞和(ii)补充抗坏血酸支持细胞外基质重塑和 CB 融合,以及(iii)增加静态拉伸支持肌节对齐和 CM 偶联。所有因素共同显著增强了鼠和人 BCT 的收缩性,使优化条件下人 BCT 的主动张力达到了迄今为止无与伦比的 4.4 mN/mm2。最后,使用无动物定义的基质成分实施了用于生成人 PSC 衍生的心脏组织的高级方案。
从富集的 PSC 衍生的 CM 基于非解离的心脏细胞聚集体形成组织的新概念,可以生成具有与天然心肌相当的收缩力的 BCT。与使用无动物定义的基质成功生成组织相结合,这代表了基于干细胞的心脏组织用于心肌修复的临床应用的重要一步。