Suppr超能文献

青蒿素类药物与其他抗疟药物相互作用与共因子模型的关系——药物作用的统一假说。

Interactions between artemisinins and other antimalarial drugs in relation to the cofactor model--a unifying proposal for drug action.

机构信息

Department of Chemistry, Institute of Molecular Technology for Drug Discovery and Synthesis, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China.

出版信息

ChemMedChem. 2012 Dec;7(12):2204-26. doi: 10.1002/cmdc.201200383. Epub 2012 Oct 30.

Abstract

Artemisinins are proposed to act in the malaria parasite cytosol by oxidizing dihydroflavin cofactors of redox-active flavoenzymes, and under aerobic conditions by inducing their autoxidation. Perturbation of redox homeostasis coupled with the generation of reactive oxygen species (ROS) ensues. Ascorbic acid-methylene blue (MB), N-benzyl-1,4-dihydronicotinamide (BNAH)-MB, BNAH-lumiflavine, BNAH-riboflavin (RF), and NADPH-FAD-E. coli flavin reductase (Fre) systems at pH 7.4 generate leucomethylene blue (LMB) and reduced flavins that are rapidly oxidized in situ by artemisinins. These oxidations are inhibited by the 4-aminoquinolines piperaquine (PPQ), chloroquine (CQ), and others. In contrast, the arylmethanols lumefantrine, mefloquine (MFQ), and quinine (QN) have little or no effect. Inhibition correlates with the antagonism exerted by 4-aminoquinolines on the antimalarial activities of MB, RF, and artemisinins. Lack of inhibition correlates with the additivity/synergism between the arylmethanols and artemisinins. We propose association via π complex formation between the 4-aminoquinolines and LMB or the dihydroflavins; this hinders hydride transfer from the reduced conjugates to the artemisinins. The arylmethanols have a decreased tendency to form π complexes, and so exert no effect. The parallel between chemical reactivity and antagonism or additivity/synergism draws attention to the mechanism of action of all drugs described herein. CQ and QN inhibit the formation of hemozoin in the parasite digestive vacuole (DV). The buildup of heme-Fe(III) results in an enhanced efflux from the DV into the cytosol. In addition, the lipophilic heme-Fe(III) complexes of CQ and QN that form in the DV are proposed to diffuse across the DV membrane. At the higher pH of the cytosol, the complexes decompose to liberate heme-Fe(III) . The quinoline or arylmethanol reenters the DV, and so transfers more heme-Fe(III) out of the DV. In this way, the 4-aminoquinolines and arylmethanols exert antimalarial activities by enhancing heme-Fe(III) and thence free Fe(III) concentrations in the cytosol. The iron species enter into redox cycles through reduction of Fe(III) to Fe(II) largely mediated by reduced flavin cofactors and likely also by NAD(P)H-Fre. Generation of ROS through oxidation of Fe(II) by oxygen will also result. The cytotoxicities of artemisinins are thereby reinforced by the iron. Other aspects of drug action are emphasized. In the cytosol or DV, association by π complex formation between pairs of lipophilic drugs must adversely influence the pharmacokinetics of each drug. This explains the antagonism between PPQ and MFQ, for example. The basis for the antimalarial activity of RF mirrors that of MB, wherein it participates in redox cycling that involves flavoenzymes or Fre, resulting in attrition of NAD(P)H. The generation of ROS by artemisinins and ensuing Fenton chemistry accommodate the ability of artemisinins to induce membrane damage and to affect the parasite SERCA PfATP6 Ca(2+) transporter. Thus, the effect exerted by artemisinins is more likely a downstream event involving ROS that will also be modulated by mutations in PfATP6. Such mutations attenuate, but cannot abrogate, antimalarial activities of artemisinins. Overall, parasite resistance to artemisinins arises through enhancement of antioxidant defense mechanisms.

摘要

青蒿素类药物被认为在疟原虫细胞溶质中通过氧化氧化还原活性黄素酶的二氢黄素辅因子而起作用,并在有氧条件下通过诱导其自动氧化而起作用。随后发生氧化还原稳态的破坏以及活性氧 (ROS) 的产生。抗坏血酸-亚甲基蓝 (MB)、N-苄基-1,4-二氢烟酰胺 (BNAH)-MB、BNAH-亮绿、BNAH-核黄素 (RF) 和 NADPH-FAD-大肠杆菌黄素还原酶 (Fre) 系统在 pH 7.4 下生成无色亚甲基蓝 (LMB) 和还原黄素,这些黄素在原位被青蒿素类药物迅速氧化。这些氧化被 4-氨基喹啉类药物哌喹 (PPQ)、氯喹 (CQ) 和其他药物抑制。相比之下,芳基甲醇类药物如青蒿琥酯、甲氟喹 (MFQ) 和奎宁 (QN) 则几乎没有或没有作用。抑制作用与 4-氨基喹啉类药物对 MB、RF 和青蒿素类药物抗疟活性的拮抗作用相关。缺乏抑制作用与芳基甲醇类药物与青蒿素类药物之间的相加/协同作用相关。我们提出,通过 π 络合形成 4-氨基喹啉类药物和 LMB 或二氢黄素之间的关联;这阻碍了从还原共轭物向青蒿素类药物的氢化物转移。芳基甲醇类药物形成 π 络合物的趋势降低,因此没有作用。化学反应性和拮抗作用或相加/协同作用之间的平行关系引起了对本文所述所有药物作用机制的关注。CQ 和 QN 抑制寄生虫消化液泡 (DV) 中血卟啉的形成。血红素-Fe(III) 的积累导致从 DV 向细胞质的增强外排。此外,CQ 和 QN 在 DV 中形成的亲脂性血红素-Fe(III) 复合物被提议扩散穿过 DV 膜。在细胞质的较高 pH 值下,复合物分解以释放血红素-Fe(III)。喹啉或芳基甲醇重新进入 DV,从而将更多的血红素-Fe(III)从 DV 中转移出来。通过这种方式,4-氨基喹啉类药物和芳基甲醇类药物通过增强血红素-Fe(III)浓度并进而增强细胞质中的游离 Fe(III)浓度来发挥抗疟作用。铁物质通过还原黄素辅因子介导的 Fe(III)还原为 Fe(II)进入氧化还原循环,可能还通过 NAD(P)H-Fre 介导。Fe(II)被氧氧化生成 ROS 也会导致。因此,铁增强了青蒿素类药物的细胞毒性。强调了药物作用的其他方面。在细胞质或 DV 中,亲脂性药物对之间通过 π 络合形成的关联必须对每种药物的药代动力学产生不利影响。这解释了例如 PPQ 和 MFQ 之间的拮抗作用。RF 的抗疟活性反映了 MB 的抗疟活性,其中它参与涉及黄素酶或 Fre 的氧化还原循环,导致 NAD(P)H 的损耗。青蒿素类药物产生的 ROS 和随之而来的芬顿化学作用适应了青蒿素类药物诱导膜损伤和影响寄生虫 SERCA PfATP6 Ca(2+) 转运蛋白的能力。因此,青蒿素类药物的作用更可能是涉及 ROS 的下游事件,ROS 也将受到 PfATP6 突变的调节。这种突变减弱了,但不能消除青蒿素类药物的抗疟活性。总的来说,寄生虫对青蒿素类药物的耐药性是通过增强抗氧化防御机制而产生的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验