Suppr超能文献

Sonic hedgehog 脱落作为调节硫酸乙酰肝素相互作用的新角色。

An emerging role of Sonic hedgehog shedding as a modulator of heparan sulfate interactions.

机构信息

Institute for Physiological Chemistry and Pathobiochemistry, University Hospital Münster, Waldeyerstrasse 15, D-48149 Münster, Germany.

出版信息

J Biol Chem. 2012 Dec 21;287(52):43708-19. doi: 10.1074/jbc.M112.356667. Epub 2012 Nov 1.

Abstract

Major developmental morphogens of the Hedgehog (Hh) family act at short range and long range to direct cell fate decisions in vertebrate and invertebrate tissues. To this end, Hhs are released from local sources and act at a distance on target cells that express the Hh receptor Patched. However, morphogen secretion and spreading are not passive processes because all Hhs are synthesized as dually (N- and C-terminal) lipidated proteins that firmly tether to the surface of producing cells. On the cell surface, Hhs associate with each other and with heparan sulfate (HS) proteoglycans. This raises the question of how Hh solubilization and spreading is achieved. We recently discovered that Sonic hedgehog (Shh) is solubilized by proteolytic processing (shedding) of lipidated peptide termini in vitro. Because unprocessed N termini block Patched receptor binding sites in the cluster, we further suggested that their proteolytic removal is required for simultaneous Shh activation. In this work we confirm inactivity of unprocessed protein clusters and demonstrate restored biological Shh function upon distortion or removal of N-terminal amino acids and peptides. We further show that N-terminal Shh processing targets and inactivates the HS binding Cardin-Weintraub (CW) motif, resulting in soluble Shh clusters with their HS binding capacities strongly reduced. This may explain the ability of Shh to diffuse through the HS-containing extracellular matrix, whereas other HS-binding proteins are quickly immobilized. Our in vitro findings are supported by the presence of CW-processed Shh in murine brain samples, providing the first in vivo evidence for Shh shedding and subsequent solubilization of N-terminal-truncated proteins.

摘要

Hedgehog(Hh)家族的主要发育形态发生因子在短距离和长距离起作用,以指导脊椎动物和无脊椎动物组织中的细胞命运决定。为此,Hhs 从局部来源释放,并在表达 Hh 受体 Patched 的靶细胞上远距离起作用。然而,形态发生素的分泌和扩散不是被动的过程,因为所有的 Hhs 都是作为双重(N-和 C-末端)脂化蛋白合成的,这些蛋白牢固地固定在产生细胞的表面。在细胞表面,Hhs 彼此相互作用,并与肝素硫酸(HS)蛋白聚糖相互作用。这就提出了一个问题,即 Hh 如何实现溶解和扩散。我们最近发现,Sonic hedgehog(Shh)在体外通过脂化肽末端的蛋白水解处理(脱落)而溶解。由于未处理的 N 末端在簇中阻断 Patched 受体结合位点,我们进一步提出,它们的蛋白水解去除对于 Shh 的同时激活是必需的。在这项工作中,我们确认了未处理的蛋白质簇的无活性,并证明了在扭曲或去除 N 末端氨基酸和肽后,恢复了生物 Shh 功能。我们进一步表明,N 末端 Shh 加工靶标并使 HS 结合 Cardin-Weintraub(CW)基序失活,导致 HS 结合能力大大降低的可溶性 Shh 簇。这可能解释了 Shh 能够通过富含 HS 的细胞外基质扩散,而其他 HS 结合蛋白则很快被固定。我们的体外发现得到了在鼠脑样本中存在 CW 处理的 Shh 的支持,为 Shh 脱落和随后 N 末端截断蛋白的溶解提供了第一个体内证据。

相似文献

1
An emerging role of Sonic hedgehog shedding as a modulator of heparan sulfate interactions.
J Biol Chem. 2012 Dec 21;287(52):43708-19. doi: 10.1074/jbc.M112.356667. Epub 2012 Nov 1.
3
Sonic hedgehog processing and release are regulated by glypican heparan sulfate proteoglycans.
J Cell Sci. 2015 Jun 15;128(12):2374-85. doi: 10.1242/jcs.170670. Epub 2015 May 12.
5
Dual roles of the Cardin-Weintraub motif in multimeric Sonic hedgehog.
J Biol Chem. 2011 Jul 1;286(26):23608-19. doi: 10.1074/jbc.M110.206474. Epub 2011 May 13.
6
Two distinct sites in sonic Hedgehog combine for heparan sulfate interactions and cell signaling functions.
J Biol Chem. 2011 Dec 30;286(52):44391-402. doi: 10.1074/jbc.M111.285361. Epub 2011 Nov 2.
8
Sonic hedgehog shedding results in functional activation of the solubilized protein.
Dev Cell. 2011 Jun 14;20(6):764-74. doi: 10.1016/j.devcel.2011.05.010.
9
Scube2 enhances proteolytic Shh processing from the surface of Shh-producing cells.
J Cell Sci. 2014 Apr 15;127(Pt 8):1726-37. doi: 10.1242/jcs.137695. Epub 2014 Feb 12.

引用本文的文献

3
Identification of small molecule antagonists of sonic hedgehog/heparin binding with activity in hedgehog functional assays.
Biochim Biophys Acta Gen Subj. 2024 Nov;1868(11):130692. doi: 10.1016/j.bbagen.2024.130692. Epub 2024 Aug 14.
4
Designed Multifunctional Peptides for Intracellular Targets.
Antibiotics (Basel). 2022 Sep 3;11(9):1196. doi: 10.3390/antibiotics11091196.
5
Hedgehog signaling and its molecular perspective with cholesterol: a comprehensive review.
Cell Mol Life Sci. 2022 Apr 29;79(5):266. doi: 10.1007/s00018-022-04233-1.
6
Dispatching plasma membrane cholesterol and Sonic Hedgehog dispatch: two sides of the same coin?
Biochem Soc Trans. 2021 Nov 1;49(5):2455-2463. doi: 10.1042/BST20210918.
7
Association of Sonic Hedgehog with the extracellular matrix requires its zinc-coordination center.
BMC Mol Cell Biol. 2021 Apr 16;22(1):22. doi: 10.1186/s12860-021-00359-5.
8
Exploring Sonic Hedgehog Cell Signaling in Neurogenesis: Its Potential Role in Depressive Behavior.
Neurochem Res. 2021 Jul;46(7):1589-1602. doi: 10.1007/s11064-021-03307-z. Epub 2021 Mar 30.
10
C-Terminal Peptide Modifications Reveal Direct and Indirect Roles of Hedgehog Morphogen Cholesteroylation.
Front Cell Dev Biol. 2021 Jan 12;8:615698. doi: 10.3389/fcell.2020.615698. eCollection 2020.

本文引用的文献

1
Tiki1 is required for head formation via Wnt cleavage-oxidation and inactivation.
Cell. 2012 Jun 22;149(7):1565-77. doi: 10.1016/j.cell.2012.04.039.
2
Scube/You activity mediates release of dually lipid-modified Hedgehog signal in soluble form.
Genes Dev. 2012 Jun 15;26(12):1312-25. doi: 10.1101/gad.191866.112. Epub 2012 Jun 7.
3
Two distinct sites in sonic Hedgehog combine for heparan sulfate interactions and cell signaling functions.
J Biol Chem. 2011 Dec 30;286(52):44391-402. doi: 10.1074/jbc.M111.285361. Epub 2011 Nov 2.
4
Sonic hedgehog shedding results in functional activation of the solubilized protein.
Dev Cell. 2011 Jun 14;20(6):764-74. doi: 10.1016/j.devcel.2011.05.010.
5
Dual roles of the Cardin-Weintraub motif in multimeric Sonic hedgehog.
J Biol Chem. 2011 Jul 1;286(26):23608-19. doi: 10.1074/jbc.M110.206474. Epub 2011 May 13.
6
Hedgehog pathway antagonist 5E1 binds hedgehog at the pseudo-active site.
J Biol Chem. 2010 Aug 20;285(34):26570-80. doi: 10.1074/jbc.M110.112284. Epub 2010 May 26.
8
Heparan sulfate and transglutaminase activity are required for the formation of covalently cross-linked hedgehog oligomers.
J Biol Chem. 2009 Nov 20;284(47):32562-71. doi: 10.1074/jbc.M109.044867. Epub 2009 Sep 28.
9
Paracrine Hedgehog signaling in cancer.
Cancer Res. 2009 Aug 1;69(15):6007-10. doi: 10.1158/0008-5472.CAN-09-0756. Epub 2009 Jul 28.
10
Structural insights into hedgehog ligand sequestration by the human hedgehog-interacting protein HHIP.
Nat Struct Mol Biol. 2009 Jul;16(7):698-703. doi: 10.1038/nsmb.1607. Epub 2009 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验