Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit , IRCCS Scientific Institute and Regional General Hospital Casa Sollievo della Sofferenza, S. Giovanni Rotondo (FG) , Italy.
Chronobiol Int. 2012 Dec;29(10):1300-11. doi: 10.3109/07420528.2012.728662. Epub 2012 Nov 6.
The rhythmic recurrence of biological processes is driven by the functioning of cellular circadian clocks, operated by a set of genes and proteins that generate self-sustaining transcriptional-translational feedback loops with a free-running period of about 24 h. In the gastrointestinal apparatus, the functioning of the biological clocks shows distinct patterns in the different organs. The aim of this study was to evaluate the time-related variation of clock gene expression in mouse liver and stomach, two components of the digestive system sharing vascular and autonomic supply, but performing completely different functions. The authors analyzed the periodicity by cosinor analysis and the dynamics of variation by computing the fractional variation to assess the rate of change in gene expression. Five-week-old male Balb/c mice were exposed to 2 wks of 12-h light/12-h dark cycles, then kept in complete darkness for 3 d as a continuation of the dark span of the last light-dark cycle. The authors evaluated the expression of Bmal1, Clock, Cry1, Cry2, Per1, Per2, Per3, Rev-erbα, Rev-erbβ, Npas2, Timeless, Dbp, Csnk1d, and Csnk1e by using real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) in mouse liver and stomach. A significant 24-h rhythmic component was found for 10 genes in the liver (Bmal1, Clock, Cry1, Per1, Per2, Per3, Rev-erbα, Rev-erbβ, Npas2, and Dbp), and for 9 genes in the stomach (Bmal1, Cry1, Per1, Per2, Per3, Rev-erbα, Rev-erbβ, Npas2, and Dbp). In particular, Clock showed marked rhythm differences between liver and stomach, putatively due to some compensation by Npas2. The acrophase of the original values of Bmal1, Per2, Per3, Rev-erbα, Rev-erbβ, Npas2, and Dbp expression was delayed in the stomach, and the average delay expressed as mean ± SD was 14.30 ± 7.94 degrees (57.20 ± 31.78 minutes). A statistically significant difference was found in the acrophases of Bmal1 (p = .015) and Npas2 (p = .011). Fractional variations provided significant circadian rhythms for nine genes in the liver (Bmal1, Per1, Per2, Per3, Rev-erbα, Rev-erbβ, Npas2, Timeless, and Dbp), and for seven genes in the stomach (Bmal1, Clock, Per2, Rev-erbα, Npas2, Dbp, and Csnk1e). The acrophase of the fractional variations of Bmal1, Per2, Per3, Rev-erbα, Rev-erbβ, and Dbp expression was delayed in the stomach, and the average delay expressed as mean ± SD was 19.10 ± 9.39 degrees (76.40 ± 37.59 minutes). A significantly greater fractional variation was found in the liver for Clock at 06:00 h (p = .034), Per1 at 02:00 h (p = .037), and Per3 at 02:00 h (p = .029), whereas the fractional variation was greater in the stomach for Clock at 10:00 h (p = .016), and for Npas2 at 02:00 h (p = .029) and at 06:00 h (p = .044). In conclusion, liver and stomach show different phasing and dynamics of clock gene expression, which are probably related to prevailing control by different driving cues, and allow them to keep going the various metabolic pathways and diverse functional processes that they manage.
生物过程的节奏性重复是由细胞生物钟的功能驱动的,生物钟由一组基因和蛋白质组成,这些基因和蛋白质产生自我维持的转录-翻译反馈环,自由运行周期约为 24 小时。在胃肠道器官中,生物钟的功能在不同器官中表现出不同的模式。本研究的目的是评估小鼠肝脏和胃时钟基因表达的时间变化,这两个消化器官共享血管和自主供应,但执行完全不同的功能。作者通过余弦分析评估周期性,通过计算分数变化来评估基因表达变化的速率。将 5 周龄雄性 Balb/c 小鼠暴露于 12 小时光照/12 小时黑暗周期 2 周,然后在最后一个明暗周期的黑暗期继续完全黑暗 3 天。作者通过实时定量逆转录聚合酶链反应(RT-PCR)评估肝脏和胃中 Bmal1、Clock、Cry1、Cry2、Per1、Per2、Per3、Rev-erbα、Rev-erbβ、Npas2、Timeless、Dbp、Csnk1d 和 Csnk1e 的表达。在肝脏中,10 个基因(Bmal1、Clock、Cry1、Per1、Per2、Per3、Rev-erbα、Rev-erbβ、Npas2 和 Dbp)和 9 个基因(Bmal1、Cry1、Per1、Per2、Per3、Rev-erbα、Rev-erbβ、Npas2 和 Dbp)显示出显著的 24 小时节律性成分。特别是,Clock 在肝脏和胃之间表现出明显的节律差异,推测是由于 Npas2 的一些代偿作用。原始值的 Bmal1、Per2、Per3、Rev-erbα、Rev-erbβ、Npas2 和 Dbp 表达的峰相位在胃中延迟,平均延迟表示为平均值±标准差为 14.30±7.94 度(57.20±31.78 分钟)。Bmal1(p=0.015)和 Npas2(p=0.011)的峰相位存在统计学差异。分数变化为肝脏中的九个基因(Bmal1、Per1、Per2、Per3、Rev-erbα、Rev-erbβ、Npas2、Timeless 和 Dbp)和胃中的七个基因(Bmal1、Clock、Per2、Rev-erbα、Npas2、Dbp 和 Csnk1e)提供了显著的昼夜节律。Bmal1、Per2、Per3、Rev-erbα、Rev-erbβ 和 Dbp 表达的分数变化的峰相位在胃中延迟,平均延迟表示为平均值±标准差为 19.10±9.39 度(76.40±37.59 分钟)。在 06:00 时,肝脏中 Clock(p=0.034)、Per1(p=0.037)和 Per3(p=0.029)的分数变化较大,而在 10:00 时,胃中 Clock(p=0.016)和 Npas2(p=0.029)和 06:00 时(p=0.044)的分数变化较大。总之,肝脏和胃表现出不同的时钟基因表达的相位和动态,这可能与不同的驱动信号的主导控制有关,使它们能够继续进行各种代谢途径和不同的功能过程。