Das Lakshmi Kanta, Kadam Ramakant M, Bauzá Antonio, Frontera Antonio, Ghosh Ashutosh
Department of Chemistry, University College of Science, University of Calcutta , 92, A.P.C. Road, Kolkata-700 009, India.
Inorg Chem. 2012 Nov 19;51(22):12407-18. doi: 10.1021/ic301773h. Epub 2012 Nov 6.
Two new heterometallic copper(II)-mercury(II) complexes [(CuL)Hg(N3)2]n (1) and [(CuL)2Hg(N3)2] (2) and one copper(II)-cadmium(II) complex [(CuL)2Cd(N3)2] (3) have been synthesized using "metalloligand" [CuL] (where H2L = N,N'-bis(salicylidene)-1,3-propanediamine) and structurally characterized. Complex 1 is a one-dimensional (1D) helical coordination polymer constructed by the joining of the dinuclear [(CuL)Hg(N3)2] units through a single μ-l,l azido bridge. In the dinuclear unit the Hg(II) is bonded with two phenoxido oxygen atoms of "metalloligand" [CuL] and two nitrogen atoms of azido ligands. Complex 2 is a linear trinuclear entity, in which two terminal "metalloligands" [CuL] are coordinated to central Hg(II) through double phenoxido bridges. The azido ligands link the central mercury atom with the terminal copper atoms via μ-l,3 bridges. In contrast, the trinuclear complex 3 is bent. Here, in addition to two double phenoxido bridges, central Cd(II) is bonded to two mutually cis nitrogen atoms of two terminal azido ligands. The variation in the coordination modes of the azido ligand seems to be responsible for the different molecular shapes of 2 and 3. Interestingly, bond distances between the Hg atoms and the central nitrogen atom of the azido ligands are 2.790(4) and 2.816(5) Å in 1 and 2.823(4) Å in 2. These bond distances are significantly less than the sum of van der Waals radii of mercury (2.04 Å) and nitrogen (1.55 Å) and considerably longer than the sum of their covalent radii (2.03 Å). However the distances are similar to reported Hg-N bond distances of some Hg(II) complexes. Therefore, we have performed a theoretical density functional theory study to know whether there is any interaction between the central nitrogen atom of the azido ligand and the mercury atoms. We have used the Bader's "atoms-in-molecules", energetic and orbital analyses to conclude that such interaction does not exist. The probable reason for different molecular shapes observed in trinuclear complexes of 2 and 3 also has been studied and explained by theoretical calculations and using the CSD. Electronic spectra, EPR spectra and ESI mass spectra show that all three complexes lose their solid state identity in solution.
利用“金属配体”[CuL](其中H₂L = N,N'-双(水杨醛亚胺基)-1,3-丙二胺)合成了两种新型异金属铜(II)-汞(II)配合物[(CuL)Hg(N₃)₂]ₙ(1)和[(CuL)₂Hg(N₃)₂](2)以及一种铜(II)-镉(II)配合物[(CuL)₂Cd(N₃)₂](3),并对其进行了结构表征。配合物1是一种一维(1D)螺旋配位聚合物,由双核[(CuL)Hg(N₃)₂]单元通过单个μ-1,1叠氮桥连接而成。在双核单元中,Hg(II)与“金属配体”[CuL]的两个苯氧基氧原子以及叠氮配体的两个氮原子键合。配合物2是一个线性三核实体,其中两个末端“金属配体”[CuL]通过双苯氧基桥与中心Hg(II)配位。叠氮配体通过μ-1,3桥将中心汞原子与末端铜原子相连。相比之下,三核配合物3是弯曲的。在这里,除了两个双苯氧基桥外,中心Cd(II)与两个末端叠氮配体的两个相互顺式的氮原子键合。叠氮配体配位模式的变化似乎是导致2和3具有不同分子形状的原因。有趣的是,在1中Hg原子与叠氮配体中心氮原子之间的键长为2.790(4) Å,在2中为2.816(5) Å,在2中为2.823(4) Å。这些键长明显小于汞(2.04 Å)和氮(1.55 Å)的范德华半径之和,且比它们的共价半径之和(2.03 Å)长得多。然而,这些距离与一些Hg(II)配合物报道的Hg-N键长相似。因此,我们进行了理论密度泛函理论研究,以了解叠氮配体的中心氮原子与汞原子之间是否存在任何相互作用。我们使用了巴德的“分子中的原子”、能量和轨道分析来得出不存在这种相互作用的结论。还通过理论计算并使用CSD研究和解释了在2和3的三核配合物中观察到的不同分子形状的可能原因。电子光谱、电子顺磁共振光谱和电喷雾质谱表明,所有三种配合物在溶液中都会失去其固态特性。