Department of Molecular and Applied Biosciences, Applied Biotechnology Research Group, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK.
Bioresour Technol. 2013 Jan;127:1-8. doi: 10.1016/j.biortech.2012.09.065. Epub 2012 Sep 27.
In this study, azo dye adapted mixed microbial consortium was used to effectively remove colour from azo dye mixtures and to simultaneously generate bio-electricity using microbial fuel cells (MFCs). Operating temperature (20-50 °C) and salinity (0.5-2.5%w/v) were varied during experiments. Reactor operation at 50 °C improved dye decolourisation and COD removal kinetic constants by approximately 2-fold compared to the kinetic constants at 30 °C. Decolourisation and COD removal kinetic constants remained high (0.28 h(-1) and 0.064 h(-1) respectively) at moderate salinity (1%w/v) but deteriorated approximately 4-fold when the salinity was raised to 2.5% (w/v). Molecular phylogenetic analysis of microbial cultures used in the study indicated that both un-acclimated and dye acclimated cultures from MFCs were predominantly comprised of Firmicutes bacteria. This study demonstrates the possibility of using adapted microbial consortia in MFCs for achieving efficient bio-decolourisation of complex azo dye mixtures and concomitant bio-electricity generation under industrially relevant conditions.
在这项研究中,采用偶氮染料适应混合微生物联合体,利用微生物燃料电池(MFCs)有效地从偶氮染料混合物中去除颜色并同时产生生物电能。实验过程中改变了操作温度(20-50°C)和盐度(0.5-2.5%w/v)。与在 30°C 时的动力学常数相比,在 50°C 下运行的反应器将染料脱色和 COD 去除动力学常数提高了约 2 倍。在中等盐度(1%w/v)下,脱色和 COD 去除动力学常数仍然很高(分别为 0.28 h(-1)和 0.064 h(-1)),但当盐度升高到 2.5%(w/v)时,恶化了约 4 倍。对 MFC 中使用的微生物培养物进行的分子系统发育分析表明,未驯化和染料驯化的培养物主要由厚壁菌门细菌组成。本研究表明,在工业相关条件下,使用适应的微生物联合体在 MFC 中实现复杂偶氮染料混合物的有效生物脱色和同时产生生物电能是可能的。