Suppr超能文献

hsp70 和麻疹病毒感染大脑中 I 型干扰素依赖的抗病毒免疫的新轴。

hsp70 and a novel axis of type I interferon-dependent antiviral immunity in the measles virus-infected brain.

机构信息

Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.

出版信息

J Virol. 2013 Jan;87(2):998-1009. doi: 10.1128/JVI.02710-12. Epub 2012 Nov 7.

Abstract

The major inducible 70-kDa heat shock protein (hsp70) is host protective in a mouse model of measles virus (MeV) brain infection. Transgenic constitutive expression of hsp70 in neurons, the primary target of MeV infection, abrogates neurovirulence in neonatal H-2(d) congenic C57BL/6 mice. A significant level of protection is retained after depletion of T lymphocytes, implicating innate immune mechanisms. The focus of the present work was to elucidate the basis for hsp70-dependent innate immunity using this model. Transcriptome analysis of brains from transgenic (TG) and nontransgenic (NT) mice 5 days after infection identified type I interferon (IFN) signaling, macrophage activation, and antigen presentation as the main differences linked to survival. The pivotal role of type I IFN in hsp70-mediated protection was demonstrated in mice with a genetically disrupted type I IFN receptor (IFNAR(-/-)), where IFNAR(-/-) eliminated the difference in survival between TG and NT mice. Brain macrophages, not neurons, are the predominant source of type I IFN in the virus-infected brain, and in vitro studies provided a mechanistic basis by which MeV-infected neurons can induce IFN-β in uninfected microglia in an hsp70-dependent manner. MeV infection induced extracellular release of hsp70 from mouse neuronal cells that constitutively express hsp70, and extracellular hsp70 induced IFN-β transcription in mouse microglial cells through Toll-like receptors 2 and 4. Collectively, our results support a novel axis of type I IFN-dependent antiviral immunity in the virus-infected brain that is driven by hsp70.

摘要

主要诱导型 70kDa 热休克蛋白(hsp70)在麻疹病毒(MeV)脑感染的小鼠模型中具有宿主保护作用。神经元中 hsp70 的转基因组成型表达,是 MeV 感染的主要靶标,消除了新生 H-2(d)同基因 C57BL/6 小鼠的神经毒力。在耗尽 T 淋巴细胞后,仍保留了显著水平的保护作用,提示存在固有免疫机制。目前这项工作的重点是使用该模型阐明 hsp70 依赖性固有免疫的基础。感染后 5 天,来自转基因(TG)和非转基因(NT)小鼠的大脑转录组分析确定了 I 型干扰素(IFN)信号、巨噬细胞激活和抗原呈递作为与存活相关的主要差异。在具有遗传缺陷的 I 型 IFN 受体(IFNAR(-/-))小鼠中,IFNAR(-/-)消除了 TG 和 NT 小鼠之间存活差异,证明了 I 型 IFN 在 hsp70 介导的保护中的关键作用。病毒感染大脑中的巨噬细胞,而不是神经元,是 IFN-β的主要来源,体外研究提供了一种机制基础,即 MeV 感染的神经元可以以 hsp70 依赖的方式诱导未感染的小胶质细胞中 IFN-β的转录。MeV 感染诱导持续表达 hsp70 的小鼠神经元细胞中外源释放 hsp70,而细胞外 hsp70 通过 Toll 样受体 2 和 4 诱导小鼠小胶质细胞中 IFN-β 的转录。总之,我们的结果支持了一种新型的 I 型 IFN 依赖的抗病毒免疫轴,该轴在病毒感染的大脑中由 hsp70 驱动。

相似文献

1
hsp70 and a novel axis of type I interferon-dependent antiviral immunity in the measles virus-infected brain.
J Virol. 2013 Jan;87(2):998-1009. doi: 10.1128/JVI.02710-12. Epub 2012 Nov 7.
2
hsp70-dependent antiviral immunity against cytopathic neuronal infection by vesicular stomatitis virus.
J Virol. 2013 Oct;87(19):10668-78. doi: 10.1128/JVI.00872-13. Epub 2013 Jul 24.
3
7
T cell-, interleukin-12-, and gamma interferon-driven viral clearance in measles virus-infected brain tissue.
J Virol. 2011 Apr;85(7):3664-76. doi: 10.1128/JVI.01496-10. Epub 2011 Jan 26.
9
Type I interferon signaling limits reoviral tropism within the brain and prevents lethal systemic infection.
J Neurovirol. 2011 Aug;17(4):314-26. doi: 10.1007/s13365-011-0038-1. Epub 2011 Jun 14.

引用本文的文献

3
Hsp70 Inhibits the Replication of Fowl Adenovirus Serotype 4 by Suppressing Viral Hexon with the Assistance of DnaJC7.
J Virol. 2022 Aug 10;96(15):e0080722. doi: 10.1128/jvi.00807-22. Epub 2022 Jul 19.
4
Epigenetic rewiring of pathways related to odour perception in immune cells exposed to SARS-CoV-2 and .
Epigenetics. 2022 Dec;17(13):1875-1891. doi: 10.1080/15592294.2022.2089471. Epub 2022 Jun 26.
6
Genomic associations with poxvirus across divergent island populations in Berthelot's pipit.
Mol Ecol. 2022 Jun;31(11):3154-3173. doi: 10.1111/mec.16461. Epub 2022 Apr 18.
7
HYPK coordinates degradation of polyneddylated proteins by autophagy.
Autophagy. 2022 Aug;18(8):1763-1784. doi: 10.1080/15548627.2021.1997053. Epub 2021 Nov 26.
8
SARS-CoV-2 nucleocapsid protein interacts with immunoregulators and stress granules and phase separates to form liquid droplets.
FEBS Lett. 2021 Dec;595(23):2872-2896. doi: 10.1002/1873-3468.14229. Epub 2021 Nov 22.

本文引用的文献

1
Visualizing production of beta interferon by astrocytes and microglia in brain of La Crosse virus-infected mice.
J Virol. 2012 Oct;86(20):11223-30. doi: 10.1128/JVI.01093-12. Epub 2012 Aug 8.
2
Systematic identification of type I and type II interferon-induced antiviral factors.
Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4239-44. doi: 10.1073/pnas.1114981109. Epub 2012 Feb 27.
3
Sphingolipid-modulated exosome secretion promotes clearance of amyloid-β by microglia.
J Biol Chem. 2012 Mar 30;287(14):10977-89. doi: 10.1074/jbc.M111.324616. Epub 2012 Feb 2.
5
Microarray analysis of genes associated with cell surface NIS protein levels in breast cancer.
BMC Res Notes. 2011 Oct 11;4:397. doi: 10.1186/1756-0500-4-397.
6
Microvesicles and viral infection.
J Virol. 2011 Dec;85(24):12844-54. doi: 10.1128/JVI.05853-11. Epub 2011 Oct 5.
8
A diverse range of gene products are effectors of the type I interferon antiviral response.
Nature. 2011 Apr 28;472(7344):481-5. doi: 10.1038/nature09907. Epub 2011 Apr 10.
9
Measles virus neurovirulence and host immunity.
Future Virol. 2011 Jan 1;6(1):85-99. doi: 10.2217/fvl.10.70.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验