Department of Chemistry, CB #3290, University of North Carolina, Chapel Hill, North Carolina 27599, United States.
J Am Chem Soc. 2012 Dec 5;134(48):19895-908. doi: 10.1021/ja310074j. Epub 2012 Nov 20.
As a new class of porous, crystalline, molecular materials, metal-organic frameworks (MOFs) have shown great promise as recyclable and reusable single-site solid catalysts. Periodic order and site isolation of the catalytic struts in MOFs facilitate the studies of their activities and reaction mechanisms. Herein we report the construction of two highly stable MOFs (1 and 2) using elongated dicarboxylate bridging ligands derived from CpIr(L)Cl complexes (L = dibenzoate-substituted 2,2'-bipyridine, bpy-dc, or dibenzoate-substituted 2-phenylpyridine, ppy-dc) and Zr(6)O(4)(OH)(4)(carboxylate)(12) cuboctahedral secondary building units (SBUs) and the elucidation of water oxidation pathways of the CpIr(L)Cl catalysts using these MOFs. We carried out detailed kinetic studies of Ce(4+)-driven water oxidation reactions (WORs) catalyzed by the MOFs using UV-vis spectroscopy, phosphorescent oxygen detection, and gas chromatographic analysis. These results confirmed not only water oxidation activity of the MOFs but also indicated oxidative degradation of the Cp* rings during the WOR. The (bpy-dc)Ir(H(2)O)(2)XCl (X is likely a formate or acetate group) complex resulted from the oxidative degradation process was identified as a competent catalyst responsible for the water oxidation activity of 1. Further characterization of the MOFs recovered from WORs using X-ray photoelectron, diffuse-reflectance UV-vis absorption, luminescence, and infrared spectroscopies supported the identity of (bpy-dc)Ir(H(2)O)(2)XCl as an active water oxidation catalyst. Kinetics of MOF-catalyzed WORs were monitored by Ce(4+) consumptions and fitted with a reaction-diffusion model, revealing an intricate relationship between reaction and diffusion rates. Our work underscores the opportunity in using MOFs as well-defined single-site solid catalytic systems to reveal mechanistic details that are difficult to obtain for their homogeneous counterparts.
作为一类新型的多孔、结晶、分子材料,金属有机骨架(MOFs)作为可回收和再利用的单活性位固体催化剂具有很大的应用前景。MOFs 中催化支链的周期性排列和活性位隔离促进了对其活性和反应机理的研究。在此,我们报道了使用源自 CpIr(L)Cl 配合物的拉长二羧酸桥连配体(L=二苯甲酸盐取代的 2,2'-联吡啶、bpy-dc,或二苯甲酸盐取代的 2-苯基吡啶、ppy-dc)和 Zr(6)O(4)(OH)(4)(羧酸)(12) 立方八面体次级结构单元(SBUs)构建了两种高度稳定的 MOFs(1 和 2),并阐明了使用这些 MOFs 研究 CpIr(L)Cl 催化剂的水氧化途径。我们使用紫外可见光谱、磷光氧检测和气相色谱分析对 Ce(4+)-驱动的水氧化反应(WORs)进行了详细的动力学研究,结果表明 MOFs 不仅具有水氧化活性,而且表明在 WORs 过程中 Cp*环发生了氧化降解。氧化降解过程中生成的(bpy-dc)Ir(H(2)O)(2)XCl(X 可能是甲酸盐或乙酸盐基团)配合物被鉴定为负责 1 水氧化活性的有效催化剂。使用 X 射线光电子能谱、漫反射紫外可见吸收光谱、发光和红外光谱对 WORs 中回收的 MOFs 进行进一步表征,支持(bpy-dc)Ir(H(2)O)(2)XCl 是一种有效的水氧化催化剂。通过 Ce(4+)消耗监测 MOF 催化的 WORs 动力学,并使用反应-扩散模型拟合,揭示了反应和扩散速率之间的复杂关系。我们的工作强调了将 MOFs 用作明确的单活性位固体催化体系的机会,以揭示其均相对应物难以获得的机制细节。