Department of Anesthesia and Perioperative Medicine, University of Manitoba, Winnipeg, Canada.
PLoS One. 2012;7(11):e47443. doi: 10.1371/journal.pone.0047443. Epub 2012 Nov 5.
An impaired vascular response in the brain regionally may indicate reduced vascular reserve and vulnerability to ischemic injury. Changing the carbon dioxide (CO(2)) tension in arterial blood is commonly used as a cerebral vasoactive stimulus to assess the cerebral vascular response, changing cerebral blood flow (CBF) by up to 5-11 percent/mmHg in normal adults. Here we describe two approaches to generating the CO(2) challenge using a computer-controlled gas blender to administer: i) a square wave change in CO(2) and, ii) a ramp stimulus, consisting of a continuously graded change in CO(2) over a range. Responses were assessed regionally by blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI).
METHODOLOGY/PRINCIPAL FINDINGS: We studied 8 patients with known cerebrovascular disease (carotid stenosis or occlusion) and 2 healthy subjects. The square wave stimulus was used to study the dynamics of the vascular response, while the ramp stimulus assessed the steady-state response to CO(2). Cerebrovascular reactivity (CVR) maps were registered by color coding and overlaid on the anatomical scans generated with 3 Tesla MRI to assess the corresponding BOLD signal change/mmHg change in CO(2), voxel-by-voxel. Using a fractal temporal approach, detrended fluctuation analysis (DFA) maps of the processed raw BOLD signal per voxel over the same CO(2) range were generated. Regions of BOLD signal decrease with increased CO(2) (coded blue) were seen in all of these high-risk patients, indicating regions of impaired CVR. All patients also demonstrated regions of altered signal structure on DFA maps (Hurst exponents less than 0.5; coded blue) indicative of anti-persistent noise. While 'blue' CVR maps remained essentially stable over the time of analysis, 'blue' DFA maps improved.
CONCLUSIONS/SIGNIFICANCE: This combined dual stimulus and dual analysis approach may be complementary in identifying vulnerable brain regions and thus constitute a regional as well as global brain stress test.
脑区域性血管反应受损可能表明血管储备减少和易发生缺血性损伤。改变动脉血中的二氧化碳(CO2)张力通常被用作评估脑血管反应的脑血管活性刺激,在正常成年人中可使脑血流量(CBF)增加 5-11%/mmHg。在此,我们描述了两种使用计算机控制的气体混合器来产生 CO2 挑战的方法:i)CO2 方波变化,和 ii)斜坡刺激,由 CO2 连续分级变化组成。通过血氧水平依赖(BOLD)磁共振成像(MRI)评估区域性反应。
方法/主要发现:我们研究了 8 名已知患有脑血管疾病(颈动脉狭窄或闭塞)的患者和 2 名健康受试者。使用方波刺激来研究血管反应的动力学,而斜坡刺激评估 CO2 稳态反应。脑血管反应性(CVR)图通过颜色编码注册,并覆盖在 3T MRI 生成的解剖扫描上,以评估相应的 BOLD 信号变化/mmHg CO2 变化,逐像素。使用分形时间方法,对同一 CO2 范围内每个体素的原始 BOLD 信号进行去趋势波动分析(DFA)处理后生成的图。在所有这些高风险患者中,都可以看到 CO2 增加时 BOLD 信号减少的区域(编码为蓝色),这表明 CVR 受损区域。所有患者在 DFA 图上也表现出信号结构改变的区域(Hurst 指数小于 0.5;编码为蓝色),表明存在反持久噪声。虽然“蓝色”CVR 图在分析时间内基本保持稳定,但“蓝色”DFA 图有所改善。
结论/意义:这种联合的双重刺激和双重分析方法可能在识别易损脑区方面具有互补性,因此构成了区域性和全球性的脑应激测试。