Suppr超能文献

当前基于肽段的蛋白质组学数据生成和鉴定的算法解决方案。

Current algorithmic solutions for peptide-based proteomics data generation and identification.

机构信息

Institute for Systems Biology, Seattle, WA 98109, USA.

出版信息

Curr Opin Biotechnol. 2013 Feb;24(1):31-8. doi: 10.1016/j.copbio.2012.10.013. Epub 2012 Nov 8.

Abstract

Peptide-based proteomic data sets are ever increasing in size and complexity. These data sets provide computational challenges when attempting to quickly analyze spectra and obtain correct protein identifications. Database search and de novo algorithms must consider high-resolution MS/MS spectra and alternative fragmentation methods. Protein inference is a tricky problem when analyzing large data sets of degenerate peptide identifications. Combining multiple algorithms for improved peptide identification puts significant strain on computational systems when investigating large data sets. This review highlights some of the recent developments in peptide and protein identification algorithms for analyzing shotgun mass spectrometry data when encountering the aforementioned hurdles. Also explored are the roles that analytical pipelines, public spectral libraries, and cloud computing play in the evolution of peptide-based proteomics.

摘要

基于肽的蛋白质组学数据集的规模和复杂性不断增加。在尝试快速分析光谱并获得正确的蛋白质鉴定时,这些数据集带来了计算上的挑战。数据库搜索和从头算法必须考虑高分辨率 MS/MS 光谱和替代的碎片化方法。在分析大量退化肽鉴定的大型数据集时,蛋白质推断是一个棘手的问题。当研究大型数据集时,将多个算法结合起来以提高肽鉴定的效果会对计算系统造成很大的压力。当遇到上述障碍时,本文重点介绍了用于分析鸟枪法质谱数据的肽和蛋白质鉴定算法的一些最新进展。还探讨了分析管道、公共光谱库和云计算在基于肽的蛋白质组学发展中的作用。

相似文献

1
Current algorithmic solutions for peptide-based proteomics data generation and identification.
Curr Opin Biotechnol. 2013 Feb;24(1):31-8. doi: 10.1016/j.copbio.2012.10.013. Epub 2012 Nov 8.
3
In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics.
J Proteomics. 2017 Jan 6;150:170-182. doi: 10.1016/j.jprot.2016.08.002. Epub 2016 Aug 4.
4
Improving the Protein Inference from Bottom-Up Proteomic Data Using Identifications from MS1 Spectra.
J Am Soc Mass Spectrom. 2021 May 5;32(5):1258-1262. doi: 10.1021/jasms.1c00061. Epub 2021 Apr 26.
5
Tutorial on de novo peptide sequencing using MS/MS mass spectrometry.
J Bioinform Comput Biol. 2012 Dec;10(6):1231002. doi: 10.1142/S0219720012310026. Epub 2012 Aug 7.
6
De novo sequencing methods in proteomics.
Methods Mol Biol. 2010;604:105-21. doi: 10.1007/978-1-60761-444-9_8.
7
Tandem mass spectral libraries of peptides and their roles in proteomics research.
Mass Spectrom Rev. 2017 Sep;36(5):634-648. doi: 10.1002/mas.21512. Epub 2016 Jul 12.
8
Elective affinities--bioinformatic analysis of proteomic mass spectrometry data.
Arch Physiol Biochem. 2009 Dec;115(5):311-9. doi: 10.3109/13813450903390039.
10
Application of de Novo Sequencing to Large-Scale Complex Proteomics Data Sets.
J Proteome Res. 2016 Mar 4;15(3):732-42. doi: 10.1021/acs.jproteome.5b00861. Epub 2016 Jan 25.

引用本文的文献

2
Assessing Multiple Evidence Streams to Decide on Confidence for Identification of Post-Translational Modifications, within and Across Data Sets.
J Proteome Res. 2023 Jun 2;22(6):1828-1842. doi: 10.1021/acs.jproteome.2c00823. Epub 2023 Apr 26.
3
Total Retention Liquid Chromatography-Mass Spectrometry to Achieve Maximum Protein Sequence Coverage.
Anal Chem. 2021 Mar 30;93(12):5054-5060. doi: 10.1021/acs.analchem.0c04292. Epub 2021 Mar 16.
4
DNMSO; an ontology for representing de novo sequencing results from Tandem-MS data.
PeerJ. 2020 Oct 21;8:e10216. doi: 10.7717/peerj.10216. eCollection 2020.
5
The Power of Three in Cannabis Shotgun Proteomics: Proteases, Databases and Search Engines.
Proteomes. 2020 Jun 15;8(2):13. doi: 10.3390/proteomes8020013.
7
Computational Oncology in the Multi-Omics Era: State of the Art.
Front Oncol. 2020 Apr 7;10:423. doi: 10.3389/fonc.2020.00423. eCollection 2020.
8
Multifunctional sequence-defined macromolecules for chemical data storage.
Nat Commun. 2018 Oct 26;9(1):4451. doi: 10.1038/s41467-018-06926-3.
9
Identification of RNA-binding domains of RNA-binding proteins in cultured cells on a system-wide scale with RBDmap.
Nat Protoc. 2017 Dec;12(12):2447-2464. doi: 10.1038/nprot.2017.106. Epub 2017 Nov 2.
10
Phosphoproteome Discovery in Human Biological Fluids.
Proteomes. 2016 Dec 1;4(4):37. doi: 10.3390/proteomes4040037.

本文引用的文献

1
Tempest: GPU-CPU computing for high-throughput database spectral matching.
J Proteome Res. 2012 Jul 6;11(7):3581-91. doi: 10.1021/pr300338p. Epub 2012 Jun 8.
2
Peptide identification by tandem mass spectrometry with alternate fragmentation modes.
Mol Cell Proteomics. 2012 Sep;11(9):550-7. doi: 10.1074/mcp.R112.018556. Epub 2012 May 17.
3
Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole orbitrap mass spectrometer.
J Proteome Res. 2012 Jun 1;11(6):3487-97. doi: 10.1021/pr3000249. Epub 2012 May 10.
4
Pepitome: evaluating improved spectral library search for identification complementarity and quality assessment.
J Proteome Res. 2012 Mar 2;11(3):1686-95. doi: 10.1021/pr200874e. Epub 2012 Jan 27.
5
Computational mass spectrometry-based proteomics.
PLoS Comput Biol. 2011 Dec;7(12):e1002277. doi: 10.1371/journal.pcbi.1002277. Epub 2011 Dec 1.
6
Protein identification using customized protein sequence databases derived from RNA-Seq data.
J Proteome Res. 2012 Feb 3;11(2):1009-17. doi: 10.1021/pr200766z. Epub 2011 Dec 14.
7
De novo sequencing and homology searching.
Mol Cell Proteomics. 2012 Feb;11(2):O111.014902. doi: 10.1074/mcp.O111.014902. Epub 2011 Nov 16.
8
MR-Tandem: parallel X!Tandem using Hadoop MapReduce on Amazon Web Services.
Bioinformatics. 2012 Jan 1;28(1):136-7. doi: 10.1093/bioinformatics/btr615. Epub 2011 Nov 8.
9
Building and searching tandem mass spectral libraries for peptide identification.
Mol Cell Proteomics. 2011 Dec;10(12):R111.008565. doi: 10.1074/mcp.R111.008565. Epub 2011 Sep 6.
10
A face in the crowd: recognizing peptides through database search.
Mol Cell Proteomics. 2011 Nov;10(11):R111.009522. doi: 10.1074/mcp.R111.009522. Epub 2011 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验