Institute for Systems Biology, Seattle, WA 98109, USA.
Curr Opin Biotechnol. 2013 Feb;24(1):31-8. doi: 10.1016/j.copbio.2012.10.013. Epub 2012 Nov 8.
Peptide-based proteomic data sets are ever increasing in size and complexity. These data sets provide computational challenges when attempting to quickly analyze spectra and obtain correct protein identifications. Database search and de novo algorithms must consider high-resolution MS/MS spectra and alternative fragmentation methods. Protein inference is a tricky problem when analyzing large data sets of degenerate peptide identifications. Combining multiple algorithms for improved peptide identification puts significant strain on computational systems when investigating large data sets. This review highlights some of the recent developments in peptide and protein identification algorithms for analyzing shotgun mass spectrometry data when encountering the aforementioned hurdles. Also explored are the roles that analytical pipelines, public spectral libraries, and cloud computing play in the evolution of peptide-based proteomics.
基于肽的蛋白质组学数据集的规模和复杂性不断增加。在尝试快速分析光谱并获得正确的蛋白质鉴定时,这些数据集带来了计算上的挑战。数据库搜索和从头算法必须考虑高分辨率 MS/MS 光谱和替代的碎片化方法。在分析大量退化肽鉴定的大型数据集时,蛋白质推断是一个棘手的问题。当研究大型数据集时,将多个算法结合起来以提高肽鉴定的效果会对计算系统造成很大的压力。当遇到上述障碍时,本文重点介绍了用于分析鸟枪法质谱数据的肽和蛋白质鉴定算法的一些最新进展。还探讨了分析管道、公共光谱库和云计算在基于肽的蛋白质组学发展中的作用。