Suppr超能文献

基于脉冲耦合神经网络的网络路由中有效最短路径树的计算。

Efficient shortest-path-tree computation in network routing based on pulse-coupled neural networks.

机构信息

School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.

出版信息

IEEE Trans Cybern. 2013 Jun;43(3):995-1010. doi: 10.1109/TSMCB.2012.2221695. Epub 2012 Oct 23.

Abstract

Shortest path tree (SPT) computation is a critical issue for routers using link-state routing protocols, such as the most commonly used open shortest path first and intermediate system to intermediate system. Each router needs to recompute a new SPT rooted from itself whenever a change happens in the link state. Most commercial routers do this computation by deleting the current SPT and building a new one using static algorithms such as the Dijkstra algorithm at the beginning. Such recomputation of an entire SPT is inefficient, which may consume a considerable amount of CPU time and result in a time delay in the network. Some dynamic updating methods using the information in the updated SPT have been proposed in recent years. However, there are still many limitations in those dynamic algorithms. In this paper, a new modified model of pulse-coupled neural networks (M-PCNNs) is proposed for the SPT computation. It is rigorously proved that the proposed model is capable of solving some optimization problems, such as the SPT. A static algorithm is proposed based on the M-PCNNs to compute the SPT efficiently for large-scale problems. In addition, a dynamic algorithm that makes use of the structure of the previously computed SPT is proposed, which significantly improves the efficiency of the algorithm. Simulation results demonstrate the effective and efficient performance of the proposed approach.

摘要

最短路径树(SPT)计算是使用链路状态路由协议的路由器的一个关键问题,例如最常用的开放式最短路径优先和中间系统到中间系统。每当链路状态发生变化时,每个路由器都需要重新计算一个新的以自身为根的 SPT。大多数商业路由器都是通过在开始时使用静态算法(如 Dijkstra 算法)删除当前 SPT 并构建新的 SPT 来完成此计算。整个 SPT 的这种重新计算效率不高,可能会消耗大量的 CPU 时间,并导致网络延迟。近年来,已经提出了一些使用更新后的 SPT 中的信息的动态更新方法。然而,这些动态算法仍然存在许多限制。本文提出了一种用于 SPT 计算的改进的脉冲耦合神经网络(M-PCNN)的新模型。严格证明了所提出的模型能够解决一些优化问题,例如 SPT。基于 M-PCNN 提出了一种静态算法,用于有效地计算大规模问题的 SPT。此外,还提出了一种利用先前计算的 SPT 结构的动态算法,显著提高了算法的效率。仿真结果证明了所提出方法的有效性和高效性。

相似文献

1
Efficient shortest-path-tree computation in network routing based on pulse-coupled neural networks.
IEEE Trans Cybern. 2013 Jun;43(3):995-1010. doi: 10.1109/TSMCB.2012.2221695. Epub 2012 Oct 23.
2
An efficient Earth Mover's Distance algorithm for robust histogram comparison.
IEEE Trans Pattern Anal Mach Intell. 2007 May;29(5):840-53. doi: 10.1109/TPAMI.2007.1058.
3
Multiple paths extraction in images using a constrained expanded trellis.
IEEE Trans Pattern Anal Mach Intell. 2005 Dec;27(12):1923-33. doi: 10.1109/TPAMI.2005.247.
4
Point processes for unsupervised line network extraction in remote sensing.
IEEE Trans Pattern Anal Mach Intell. 2005 Oct;27(10):1568-79. doi: 10.1109/TPAMI.2005.206.
5
Computationally efficient wavelet affine invariant functions for shape recognition.
IEEE Trans Pattern Anal Mach Intell. 2004 Aug;26(8):1095-9. doi: 10.1109/TPAMI.2004.39.
6
Artificial neural networks for document analysis and recognition.
IEEE Trans Pattern Anal Mach Intell. 2005 Jan;27(1):23-35. doi: 10.1109/TPAMI.2005.4.
7
Generic model abstraction from examples.
IEEE Trans Pattern Anal Mach Intell. 2005 Jul;27(7):1141-56. doi: 10.1109/TPAMI.2005.139.
8
An improved rotation-invariant thinning algorithm.
IEEE Trans Pattern Anal Mach Intell. 2005 Oct;27(10):1671-4. doi: 10.1109/TPAMI.2005.191.
9
Geometry-invariant texture retrieval using a dual-output pulse-coupled neural network.
Neural Comput. 2012 Jan;24(1):194-216. doi: 10.1162/NECO_a_00194. Epub 2011 Aug 18.
10
Neurocomputing model for computation of an approximate convex hull of a set of points and spheres.
IEEE Trans Neural Netw. 2007 Mar;18(2):600-5. doi: 10.1109/TNN.2007.891201.

引用本文的文献

1
Neural Network Optimal Routing Algorithm Based on Genetic Ant Colony in IPv6 Environment.
Comput Intell Neurosci. 2021 Jul 13;2021:3115704. doi: 10.1155/2021/3115704. eCollection 2021.
2
Finishing monkeypox genomes from short reads: assembly analysis and a neural network method.
BMC Genomics. 2016 Aug 31;17 Suppl 5(Suppl 5):497. doi: 10.1186/s12864-016-2826-8.
3
Gene set enrichment and topological analyses based on interaction networks in pediatric acute lymphoblastic leukemia.
Oncol Lett. 2015 Dec;10(6):3354-3362. doi: 10.3892/ol.2015.3761. Epub 2015 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验