Laboratoire de Physique des Solides, (UMR 8502), bâtiment 510, Université Paris-Sud, 91405 Orsay Cedex, France.
Rep Prog Phys. 2012 Dec;75(12):126504. doi: 10.1088/0034-4885/75/12/126504. Epub 2012 Nov 12.
We review the first experiment on dynamic transport in a phase-coherent quantum conductor. In our discussion, we highlight the use of time-dependent transport as a means of gaining insight into charge relaxation on a mesoscopic scale. For this purpose, we studied the ac conductance of a model quantum conductor, i.e. the quantum RC circuit. Prior to our experimental work, Büttiker et al (1993 Phys. Lett. A 180 364-9) first worked on dynamic mesoscopic transport in the 1990s. They predicted that the mesoscopic RC circuit can be described by a quantum capacitance related to the density of states in the capacitor and a constant charge-relaxation resistance equal to half of the resistance quantum h/2e(2), when a single mode is transmitted between the capacitance and a reservoir. By applying a microwave excitation to a gate located on top of a coherent submicronic quantum dot that is coupled to a reservoir, we validate this theoretical prediction on the ac conductance of the quantum RC circuit. Our study demonstrates that the ac conductance is directly related to the dwell time of electrons in the capacitor. Thereby, we observed a counterintuitive behavior of a quantum origin: as the transmission of the single conducting mode decreases, the resistance of the quantum RC circuit remains constant while the capacitance oscillates.
我们回顾了在相干量子导体中动态输运的首次实验。在讨论中,我们强调了利用时变输运来深入了解介观尺度上的电荷弛豫。为此,我们研究了模型量子导体的交流电导,即量子 RC 电路。在我们的实验工作之前,Büttiker 等人(1993 年 Phys. Lett. A 180 364-9)在 20 世纪 90 年代首次研究了动态介观输运。他们预测,当单个模式在电容器和储层之间传输时,介观 RC 电路可以用与电容器中态密度相关的量子电容和等于电阻量子 h/2e(2) 的一半的恒定电荷弛豫电阻来描述。通过在与储层耦合的位于相干亚微米量子点顶部的栅极上施加微波激励,我们验证了量子 RC 电路的交流电导的这一理论预测。我们的研究表明,交流电导与电容器中电子的停留时间直接相关。因此,我们观察到了一种具有量子起源的反直觉行为:随着单个导模传输的减少,量子 RC 电路的电阻保持不变,而电容则发生振荡。