Department of Chemistry and Biochemistry, University of Windsor, Ontario, Canada.
J Phys Chem B. 2012 Dec 6;116(48):14040-50. doi: 10.1021/jp310952c. Epub 2012 Nov 19.
UDP-galactopyranose mutase (UGM) is a key flavoenzyme involved in cell wall biosynthesis of a variety of pathogenic bacteria and hence, integral to their survival. It catalyzes the interconversion of UDP-galactopyranose (UDP-Galp) and UDP-galactofuranose (UDP-Galf); interconversion of the galactose moieties six- and five-membered ring forms. We have synergistically applied both density functional theory (DFT)-cluster and ONIOM quantum mechanics/molecular mechanics (QM/MM) hybrid calculations to elucidate the mechanism of this important enzyme and to provide insight into its uncommon mechanism. It is shown that the flavin must initially be in its fully reduced form. Furthermore, it requires an N5(FAD)-H proton, which, through a series of tautomerizations, is transferred onto the ring oxygen of the substrate's Galp moiety to facilitate ring-opening with concomitant Schiff base formation. Conversely, Galf formation is achieved via a series of tautomerizations involving proton transfer from the galactose's -O4(Gal)H group ultimately onto the flavin's N5(FAD) center. With the DFT-cluster model, the overall rate-limiting step with a barrier of 120.0 kJ mol(-1) is the interconversion of two Galf-flavin tautomers: one containing a C4(FAD)-OH group and the other a tetrahedral protonated-N5(FAD) center. In contrast, in the QM/MM model a considerably more extensive chemical model was used that included all of the residues surrounding the active site, and modeled both their steric and electrostatic effects. In this approach, the overall rate-limiting step with a barrier of 99.2 kJ mol(-1) occurs during conformational rearrangement of the Schiff base linear galactose-flavin complex. This appears due to the lack of suitable functional groups to facilitate the rearrangement.
UDP-半乳糖吡喃糖变位酶(UGM)是一种参与多种病原细菌细胞壁生物合成的关键黄素酶,因此对它们的生存至关重要。它催化 UDP-半乳糖吡喃糖(UDP-Galp)和 UDP-半乳糖呋喃糖(UDP-Galf)之间的互变;半乳糖部分的六元和五元环形式的互变。我们协同应用密度泛函理论(DFT)-簇和 ONIOM 量子力学/分子力学(QM/MM)混合计算来阐明该重要酶的机制,并深入了解其不寻常的机制。结果表明,黄素必须首先处于完全还原形式。此外,它需要 N5(FAD)-H 质子,通过一系列互变异构,质子转移到底物 Galp 部分的环氧上,促进开环并伴随希夫碱形成。相反,GalF 的形成是通过一系列涉及质子从半乳糖的-O4(Gal)H 基团最终转移到黄素的 N5(FAD)中心的互变异构来实现的。使用 DFT-簇模型,总速率限制步骤的势垒为 120.0 kJ mol(-1),是两种 Galf-黄素互变异构体的互变:一种含有 C4(FAD)-OH 基团,另一种含有四面体质子化-N5(FAD)中心。相比之下,在 QM/MM 模型中,使用了更广泛的化学模型,其中包括活性位点周围的所有残基,并模拟了它们的空间和静电效应。在这种方法中,总速率限制步骤的势垒为 99.2 kJ mol(-1),发生在希夫碱线性半乳糖-黄素复合物的构象重排过程中。这似乎是由于缺乏合适的功能基团来促进重排。