Department of Foods and Nutrition, College of Natural Sciences, Kookmin University, Seoul, Republic of Korea.
Eur J Clin Nutr. 2013 Jan;67(1):25-30. doi: 10.1038/ejcn.2012.175. Epub 2012 Nov 14.
BACKGROUND/OBJECTIVES: Data are limited on cardiovascular disease (CVD) risk prediction models that include dietary predictors. Using known risk factors and dietary information, we constructed and evaluated CVD risk prediction models.
SUBJECTS/METHODS: Data for modeling were from population-based prospective cohort studies comprised of 9026 men and women aged 40-69 years. At baseline, all were free of known CVD and cancer, and were followed up for CVD incidence during an 8-year period. We used Cox proportional hazard regression analysis to construct a traditional risk factor model, an office-based model, and two diet-containing models and evaluated these models by calculating Akaike information criterion (AIC), C-statistics, integrated discrimination improvement (IDI), net reclassification improvement (NRI) and calibration statistic.
We constructed diet-containing models with significant dietary predictors such as poultry, legumes, carbonated soft drinks or green tea consumption. Adding dietary predictors to the traditional model yielded a decrease in AIC (delta AIC=15), a 53% increase in relative IDI (P-value for IDI <0.001) and an increase in NRI (category-free NRI=0.14, P <0.001). The simplified diet-containing model also showed a decrease in AIC (delta AIC=14), a 38% increase in relative IDI (P-value for IDI <0.001) and an increase in NRI (category-free NRI=0.08, P<0.01) compared with the office-based model. The calibration plots for risk prediction demonstrated that the inclusion of dietary predictors contributes to better agreement in persons at high risk for CVD. C-statistics for the four models were acceptable and comparable.
We suggest that dietary information may be useful in constructing CVD risk prediction models.
背景/目的:包含饮食预测因素的数据对于心血管疾病(CVD)风险预测模型有限。我们使用已知的危险因素和饮食信息构建并评估了 CVD 风险预测模型。
受试者/方法:建模数据来自基于人群的前瞻性队列研究,包括 9026 名年龄在 40-69 岁的男性和女性。在基线时,所有参与者均无已知的 CVD 和癌症,并在 8 年内随访 CVD 发病情况。我们使用 Cox 比例风险回归分析构建了传统危险因素模型、基于办公室的模型和两个包含饮食的模型,并通过计算赤池信息量准则(AIC)、C 统计量、综合判别改善(IDI)、净重新分类改善(NRI)和校准统计量来评估这些模型。
我们构建了包含有显著饮食预测因素的饮食模型,如家禽、豆类、碳酸软饮料或绿茶的摄入。将饮食预测因素添加到传统模型中,AIC 降低(差值 AIC=15),IDI 相对增加 53%(IDI 的 P 值<0.001),NRI 增加(无分类 NRI=0.14,P<0.001)。简化的饮食模型与基于办公室的模型相比,AIC 也有所降低(差值 AIC=14),IDI 相对增加 38%(IDI 的 P 值<0.001),NRI 增加(无分类 NRI=0.08,P<0.01)。风险预测的校准图表明,包含饮食预测因素有助于更好地预测 CVD 高危人群的风险。四个模型的 C 统计量是可以接受的且相似的。
我们建议饮食信息可能有助于构建 CVD 风险预测模型。