Suppr超能文献

人皮质骨 R 曲线行为的细观力学建模。

Micromechanical modeling of R-curve behaviors in human cortical bone.

机构信息

Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238, USA.

出版信息

J Mech Behav Biomed Mater. 2012 Dec;16:136-52. doi: 10.1016/j.jmbbm.2012.09.009. Epub 2012 Oct 9.

Abstract

The risk of bone fracture increases with age because of a variety of factors that include, among others, decreasing bone quantity and quality due to increasing porosity and crack density with age. Experimental evidence has indicated that changes in bone microstructure and trace mineralization with age can result in different crack-tip strain field and fracture response, leading to different fracture mechanisms and R-curve behaviors. In this paper, a micromechanical modeling approach is developed to predict the R-curve response of bone tissue by delineating fracture mechanisms that lead to microdamage and ligament bridging by incorporating the influence of increasing porosity and crack density with age. The effects of age on fracture of human femur cortical bone due to porosity (bone quantity) and bone quality (crack density) with age are then examined via the micromechanical model.

摘要

随着年龄的增长,由于多种因素,包括骨量和骨质量的减少,由于年龄的增长导致孔隙率和裂纹密度的增加,骨折的风险增加。实验证据表明,随着年龄的增长,骨微观结构和痕量矿物质的变化会导致不同的裂纹尖端应变场和断裂响应,从而导致不同的断裂机制和 R 曲线行为。在本文中,通过纳入年龄增长导致的孔隙率(骨量)和骨质量(裂纹密度)对骨折的影响,开发了一种细观力学建模方法来预测骨组织的 R 曲线响应,从而描绘导致微损伤和韧带桥接的断裂机制。然后通过细观力学模型研究了由于孔隙率(骨量)和年龄导致的骨质量(裂纹密度)而导致的人类股骨皮质骨断裂的年龄影响。

相似文献

1
Micromechanical modeling of R-curve behaviors in human cortical bone.
J Mech Behav Biomed Mater. 2012 Dec;16:136-52. doi: 10.1016/j.jmbbm.2012.09.009. Epub 2012 Oct 9.
2
Relating crack-tip deformation to mineralization and fracture resistance in human femur cortical bone.
Bone. 2009 Sep;45(3):427-34. doi: 10.1016/j.bone.2009.01.468. Epub 2009 Jun 2.
3
Non-destructive characterization of microdamage in cortical bone using low field pulsed NMR.
J Mech Behav Biomed Mater. 2011 Apr;4(3):383-91. doi: 10.1016/j.jmbbm.2010.11.007. Epub 2010 Nov 21.
4
Prevalent role of porosity and osteonal area over mineralization heterogeneity in the fracture toughness of human cortical bone.
J Biomech. 2016 Sep 6;49(13):2748-2755. doi: 10.1016/j.jbiomech.2016.06.009. Epub 2016 Jun 15.
5
Effect of aging on the transverse toughness of human cortical bone: evaluation by R-curves.
J Mech Behav Biomed Mater. 2011 Oct;4(7):1504-13. doi: 10.1016/j.jmbbm.2011.05.020. Epub 2011 May 17.
7
Fracture toughening mechanism of cortical bone: an experimental and numerical approach.
J Mech Behav Biomed Mater. 2011 Oct;4(7):983-92. doi: 10.1016/j.jmbbm.2011.02.012. Epub 2011 Feb 28.
8
Age-related properties at the microscale affect crack propagation in cortical bone.
J Biomech. 2019 Oct 11;95:109326. doi: 10.1016/j.jbiomech.2019.109326. Epub 2019 Sep 3.
10
The relative contributions of non-enzymatic glycation and cortical porosity on the fracture toughness of aging bone.
J Biomech. 2011 Jan 11;44(2):330-6. doi: 10.1016/j.jbiomech.2010.10.016. Epub 2010 Nov 5.

引用本文的文献

1
Identifying Novel Clinical Surrogates to Assess Human Bone Fracture Toughness.
J Bone Miner Res. 2015 Jul;30(7):1290-300. doi: 10.1002/jbmr.2452. Epub 2015 Jun 8.

本文引用的文献

1
X-ray phase nanotomography resolves the 3D human bone ultrastructure.
PLoS One. 2012;7(8):e35691. doi: 10.1371/journal.pone.0035691. Epub 2012 Aug 29.
2
Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales.
Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14416-21. doi: 10.1073/pnas.1107966108. Epub 2011 Aug 22.
3
Non-destructive characterization of microdamage in cortical bone using low field pulsed NMR.
J Mech Behav Biomed Mater. 2011 Apr;4(3):383-91. doi: 10.1016/j.jmbbm.2010.11.007. Epub 2010 Nov 21.
4
Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies.
J Mech Behav Biomed Mater. 2008 Jan;1(1):59-67. doi: 10.1016/j.jmbbm.2007.04.001. Epub 2007 Jun 15.
5
Relating crack-tip deformation to mineralization and fracture resistance in human femur cortical bone.
Bone. 2009 Sep;45(3):427-34. doi: 10.1016/j.bone.2009.01.468. Epub 2009 Jun 2.
6
Improving fracture toughness of dental nanocomposites by interface engineering and micromechanics.
Eng Fract Mech. 2007 Aug;74(12):1857-1871. doi: 10.1016/j.engfracmech.2006.07.013.
7
Age-related effect on the concentration of collagen crosslinks in human osteonal and interstitial bone tissue.
Bone. 2006 Dec;39(6):1210-7. doi: 10.1016/j.bone.2006.06.026. Epub 2006 Sep 8.
8
Interactions between microstructural and geometrical adaptation in human cortical bone.
J Orthop Res. 2006 Jul;24(7):1489-98. doi: 10.1002/jor.20159.
9
Age-related change in the damage morphology of human cortical bone and its role in bone fragility.
Bone. 2006 Mar;38(3):427-31. doi: 10.1016/j.bone.2005.09.002. Epub 2005 Nov 2.
10
Microdamage: a cell transducing mechanism based on ruptured osteocyte processes.
J Biomech. 2006;39(11):2096-103. doi: 10.1016/j.jbiomech.2005.06.006. Epub 2005 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验