Division of Cardiovascular Prevention, Rehabilitation and Sports Cardiology, University Clinic for Cardiology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland.
Eur J Appl Physiol. 2013 May;113(5):1213-22. doi: 10.1007/s00421-012-2542-2. Epub 2012 Nov 16.
We examined the impact of physical activity (PA) on surrogate markers of cardiovascular health in adolescents. 52 healthy students (28 females, mean age 14.5 ± 0.7 years) were investigated. Microvascular endothelial function was assessed by peripheral arterial tonometry to determine reactive hyperemic index (RHI). Vagal activity was measured using 24 h analysis of heart rate variability [root mean square of successive normal-to-normal intervals (rMSSD)]. Exercise testing was performed to determine peak oxygen uptake ([Formula: see text]) and maximum power output. PA was assessed by accelerometry. Linear regression models were performed and adjusted for age, sex, skinfolds, and pubertal status. The cohort was dichotomized into two equally sized activity groups (low vs. high) based on the daily time spent in moderate-to-vigorous PA (MVPA, 3,000-5,200 counts(.)min(-1), model 1) and vigorous PA (VPA, >5,200 counts(.)min(-1), model 2). MVPA was an independent predictor for rMSSD (β = 0.448, P = 0.010), and VPA was associated with maximum power output (β = 0.248, P = 0.016). In model 1, the high MVPA group exhibited a higher vagal tone (rMSSD 49.2 ± 13.6 vs. 38.1 ± 11.7 ms, P = 0.006) and a lower systolic blood pressure (107.3 ± 9.9 vs. 112.9 ± 8.1 mmHg, P = 0.046). In model 2, the high VPA group had higher maximum power output values (3.9 ± 0.5 vs. 3.4 ± 0.5 W kg(-1), P = 0.012). In both models, no significant differences were observed for RHI and [Formula: see text]. In conclusion, in healthy adolescents, PA was associated with beneficial intensity-dependent effects on vagal tone, systolic blood pressure, and exercise capacity, but not on microvascular endothelial function.
我们研究了身体活动(PA)对青少年心血管健康替代标志物的影响。 调查了 52 名健康学生(女性 28 名,平均年龄 14.5 ± 0.7 岁)。 通过外周动脉张力测定来评估微血管内皮功能,以确定反应性充血指数(RHI)。 通过 24 小时心率变异性分析测量迷走神经活动[连续正常-正常间隔的均方根(rMSSD)]。 进行运动测试以确定峰值摄氧量([Formula: see text])和最大功率输出。 通过加速度计评估 PA。 进行线性回归模型,并根据年龄、性别、皮褶厚度和青春期状态进行调整。 根据每天花费在中度至剧烈 PA(MVPA,3000-5200 计数(.)分钟(-1))和剧烈 PA(VPA,>5200 计数(.)分钟(-1))的时间,将队列分为两个相等大小的活动组(低与高),基于模型 1)和剧烈 PA(VPA,>5200 计数(.)分钟(-1))。 MVPA 是 rMSSD 的独立预测因子(β=0.448,P=0.010),VPA 与最大功率输出相关(β=0.248,P=0.016)。 在模型 1 中,高 MVPA 组表现出较高的迷走神经张力(rMSSD 49.2 ± 13.6 与 38.1 ± 11.7 ms,P=0.006)和较低的收缩压(107.3 ± 9.9 与 112.9 ± 8.1 mmHg,P=0.046)。 在模型 2 中,高 VPA 组的最大功率输出值更高(3.9 ± 0.5 与 3.4 ± 0.5 W kg(-1),P=0.012)。 在两个模型中,RHI 和[Formula: see text]均无显著差异。 总之,在健康青少年中,PA 与有益的、与强度相关的迷走神经张力、收缩压和运动能力效应相关,但与微血管内皮功能无关。