Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany,
Adv Exp Med Biol. 2013;767:203-24. doi: 10.1007/978-1-4614-5037-5_10.
Different DNA repair mechanisms have evolved to protect our genome from modifications caused by endogenous and exogenous agents, thus maintaining the integrity of the DNA. Helicases often play a central role in these repair pathways and have shown to be essential for diverse tasks within these mechanisms. In prokaryotic nucleotide excision repair (NER) for example the two helicases UvrB and UvrD assume vastly different functions. While UvrB is intimately involved in damage verification and acts as an anchor for the other prokaryotic NER proteins UvrA and UvrC, UvrD is required to resolve the post-incision complex leading to the release of UvrC and the incised ssDNA fragment. For the XPD helicase in eukaryotic NER a similar function in analogy to UvrB has been proposed, whereas XPB the second helicase uses only its ATPase activity during eukaryotic NER. In prokaryotic mismatch repair (MMR) UvrD again plays a central role. The different tasks of this protein in the different repair pathways highlight the importance of regulative protein-protein interactions to fine-tune its helicase activity. In other DNA repair pathways the role of the helicases involved is sometimes not as well characterized, and no helicase has so far been described to assume the function of UvrD in eukaryotic MMR. RecQ helicases and FancJ interact with eukaryotic MMR proteins but their involvement in this repair pathway is unclear. Lastly, long-patch base excision repair is linked to the WRN helicase and many proteins within this pathway interact with the helicase leading to increased activity of the interacting proteins as observed for pol β and FEN-1 or the helicase itself is negatively regulated through the interaction with APE-1. However, compared to the precise functions described for the helicases in the other DNA repair mechanisms the role of WRN in BER remains speculative and requires further analysis.
不同的 DNA 修复机制已经进化,以保护我们的基因组免受内源性和外源性物质引起的修饰,从而维持 DNA 的完整性。解旋酶在这些修复途径中经常发挥核心作用,并已被证明对这些机制中的各种任务至关重要。例如,在原核核苷酸切除修复 (NER) 中,两种解旋酶 UvrB 和 UvrD 承担着截然不同的功能。虽然 UvrB 密切参与损伤验证,并作为其他原核 NER 蛋白 UvrA 和 UvrC 的锚点,但 UvrD 需要解决切口后复合物,导致 UvrC 和切口 ssDNA 片段的释放。对于真核 NER 中的 XPD 解旋酶,已经提出了类似于 UvrB 的类似功能,而 XPB 是第二种解旋酶,仅在真核 NER 期间使用其 ATP 酶活性。在原核错配修复 (MMR) 中,UvrD 再次发挥核心作用。该蛋白在不同修复途径中的不同任务突出了调节蛋白-蛋白相互作用以微调其解旋酶活性的重要性。在其他 DNA 修复途径中,涉及的解旋酶的作用有时并不那么明确,迄今为止,没有解旋酶被描述为在真核 MMR 中承担 UvrD 的功能。RecQ 解旋酶和 FancJ 与真核 MMR 蛋白相互作用,但它们在该修复途径中的参与尚不清楚。最后,长补丁碱基切除修复与 WRN 解旋酶相关,该途径中的许多蛋白质与解旋酶相互作用,导致相互作用蛋白的活性增加,如 pol β 和 FEN-1 观察到的,或解旋酶本身通过与 APE-1 的相互作用受到负调控。然而,与其他 DNA 修复机制中描述的解旋酶的精确功能相比,WRN 在 BER 中的作用仍具有推测性,需要进一步分析。