Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
Chemphyschem. 2013 Jan 14;14(1):185-91. doi: 10.1002/cphc.201200853. Epub 2012 Nov 19.
Hydrogenases catalyse the reversible cleavage of molecular hydrogen into protons and electrons. While most of these enzymes are inhibited under aerobic conditions, some hydrogenases are catalytically active even at ambient oxygen levels. In particular, the soluble [NiFe] hydrogenase from Ralstonia eutropha H16 couples reversible hydrogen cycling to the redox conversion of NAD(H). Its insensitivity towards oxygen has been formerly ascribed to the putative presence of additional cyanide ligands at the active site, which has been, however, discussed controversially. Based on quantum chemical calculations of model compounds, we demonstrate that spectroscopic consequences of the proposed non-standard set of inorganic ligands are in contradiction to the underlying experimental findings. In this way, the previous model for structure and function of this soluble hydrogenase is disproved on a fundamental level, thereby highlighting the efficiency of computational methods for the evaluation of experimentally derived mechanistic proposals.
氢化酶催化氢气可逆地裂解为质子和电子。虽然大多数这些酶在有氧条件下受到抑制,但一些氢化酶即使在环境氧气水平下也具有催化活性。特别是,来自 Ralstonia eutropha H16 的可溶性 [NiFe] 氢化酶将可逆的氢循环与 NAD(H) 的氧化还原转化偶联。它对氧气的不敏感性以前归因于活性位点中存在额外的氰化物配体,但这一点存在争议。基于模型化合物的量子化学计算,我们证明了所提出的非标准无机配体的光谱后果与基础实验结果相矛盾。通过这种方式,以前可溶性氢化酶的结构和功能模型在根本上被否定,从而突出了计算方法在评估实验得出的机制建议方面的效率。