Department of Physiology, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway.
Front Neurol. 2012 Nov 8;3:160. doi: 10.3389/fneur.2012.00160. eCollection 2012.
α(2)-adrenoceptors (AR) lower central sympathetic output and peripheral catecholamine release, thereby protecting against sympathetic hyperactivity and hypertension. Norepinephrine re-uptake-transporter effectively (NET) removes norepinephrine from the synapse. Overflow to plasma will therefore not reflect release. Here we tested if inhibition of re-uptake allowed presynaptic α(2)AR release control to be reflected as differences in norepinephrine overflow in anesthetized hypertensive spontaneously hypertensive rats (SHR) and normotensive rats (WKY). We also tested if α(2)AR modulated the experiment-induced epinephrine secretion, and a phenylephrine-induced, α(1)-adrenergic vasoconstriction. Blood pressure was recorded through a femoral artery catheter, and cardiac output by ascending aorta flow. After pre-treatment with NET inhibitor (desipramine), and/or α(2)AR antagonist (yohimbine, L-659,066) or agonist (clonidine, ST-91), we injected phenylephrine. Arterial blood was sampled 15 min later. Plasma catecholamine concentrations were not influenced by phenylephrine, and therefore reflected effects of pre-treatment. Desipramine and α(2)AR antagonist separately had little effect on norepinephrine overflow. Combined, they increased norepinephrine overflow, particularly in SHR. Clonidine, but not ST-91, reduced, and pertussis toxin increased norepinephrine overflow in SHR and epinephrine secretion in both strains. L-659,066 + clonidine (central α(2)AR-stimulation) normalized the high blood pressure, heart rate, and vascular tension in SHR. α(2)AR antagonists reduced phenylephrine-induced vasoconstriction equally in WKY and SHR.
α(2A)AR inhibition increased norepinephrine overflow only when re-uptake was blocked, and then with particular efficacy in SHR, possibly due to their high sympathetic tone. α(2A)AR inhibited epinephrine secretion, particularly in SHR. α(2A)AR supported α(1)AR-induced vasoconstriction equally in the two strains. α(2)AR malfunctions were therefore not detected in SHR under this basal condition.
α(2)-肾上腺素能受体(AR)降低中枢交感传出并减少外周儿茶酚胺释放,从而防止交感神经活性亢进和高血压。去甲肾上腺素再摄取转运体(NET)有效地从突触中去除去甲肾上腺素。因此,溢出到血浆中不会反映释放。在这里,我们测试了抑制再摄取是否允许将去甲肾上腺素溢出的突触前α(2)AR 释放控制反映为麻醉性高血压自发性高血压大鼠(SHR)和正常血压大鼠(WKY)的去甲肾上腺素溢出差异。我们还测试了 α(2)AR 是否调节实验诱导的肾上腺素分泌,以及苯肾上腺素诱导的α(1)-肾上腺素能血管收缩。通过股动脉导管记录血压,通过升主动脉流量记录心输出量。在用 NET 抑制剂(去甲丙咪嗪)和/或α(2)AR 拮抗剂(育亨宾、L-659,066)或激动剂(可乐定、ST-91)预处理后,我们注射了苯肾上腺素。15 分钟后采集动脉血样。苯肾上腺素对血浆儿茶酚胺浓度没有影响,因此反映了预处理的影响。去甲丙咪嗪和 α(2)AR 拮抗剂单独对去甲肾上腺素溢出的影响很小。联合使用时,它们增加了去甲肾上腺素的溢出,特别是在 SHR 中。可乐定但不是 ST-91 降低了 SHR 中的去甲肾上腺素溢出和两种品系中的肾上腺素分泌。L-659,066+可乐定(中枢α(2)AR 刺激)使 SHR 的高血压、心率和血管张力正常化。α(2)AR 拮抗剂在 WKY 和 SHR 中均同等降低了苯肾上腺素诱导的血管收缩。
只有当再摄取被阻断时,α(2A)AR 抑制才会增加去甲肾上腺素的溢出,并且在 SHR 中效果特别明显,这可能是由于其高交感神经张力。α(2A)AR 抑制了肾上腺素的分泌,特别是在 SHR 中。α(2A)AR 在两种品系中均同等支持α(1)AR 诱导的血管收缩。因此,在这种基础条件下,在 SHR 中未检测到 α(2)AR 功能障碍。