Ma Qiu-Lan, Yang Fusheng, Frautschy Sally A, Cole Greg M
Department of Neurology; University of California Los Angeles; Los Angeles, CA USA ; Geriatric Research and Clinical Center; Greater Los Angeles Veterans Affairs Healthcare System; West Los Angeles Medical Center; Los Angeles, CA USA.
Cell Logist. 2012 Apr 1;2(2):117-125. doi: 10.4161/cl.21602.
Developmental cognitive deficits including X-linked mental retardation (XLMR) can be caused by mutations in P21-activated kinase 3 (PAK3) that disrupt actin dynamics in dendritic spines. Neurodegenerative diseases such as Alzheimer disease (AD), where both PAK1 and PAK3 are dysregulated, may share final common pathways with XLMR. Independent of familial mutation, cognitive deficits emerging with aging, notably AD, begin after decades of normal function. This prolonged prodromal period involves the buildup of amyloid-β (Aβ) extracellular plaques and intraneuronal neurofibrillary tangles (NFT). Subsequently region dependent deficits in synapses, dendritic spines and cognition coincide with dysregulation in PAK1 and PAK. Specifically proximal to decline, cytoplasmic levels of actin-regulating Rho GTPase and PAK1 kinase are decreased in moderate to severe AD, while aberrant activation and translocation of PAK1 appears around the onset of cognitive deficits. Downstream to PAK1, LIM kinase inactivates cofilin, contributing to cofilin pathology, while the activation of Rho-dependent kinase ROCK increases Aβ production. Aβ activation of fyn disrupts neuronal PAK1 and ROCK-mediated signaling, resulting in synaptic deficits. Reductions in PAK1 by the anti-amyloid compound curcumin suppress synaptotoxicity. Similarly other neurological disorders, including Huntington disease (HD) show dysregulation of PAKs. PAK1 modulates mutant huntingtin toxicity by enhancing huntingtin aggregation, and inhibition of PAK activity protects HD as well as fragile X syndrome (FXS) symptoms. Since PAK plays critical roles in learning and memory and is disrupted in many cognitive disorders, targeting PAK signaling in AD, HD and XLMR may be a novel common therapeutic target for AD, HD and XLMR.
包括X连锁智力迟钝(XLMR)在内的发育性认知缺陷可能由21蛋白激活激酶3(PAK3)中的突变引起,这些突变会破坏树突棘中的肌动蛋白动力学。神经退行性疾病,如阿尔茨海默病(AD),其中PAK1和PAK3均失调,可能与XLMR共享最终的共同途径。与家族性突变无关,随着年龄增长出现的认知缺陷,尤其是AD,在数十年的正常功能后开始出现。这个漫长的前驱期涉及细胞外淀粉样β(Aβ)斑块和神经元内神经原纤维缠结(NFT)的积累。随后,突触、树突棘和认知方面的区域依赖性缺陷与PAK1和PAK的失调同时出现。具体来说,在病情下降之前,肌动蛋白调节Rho GTP酶和PAK1激酶的细胞质水平在中度至重度AD中降低,而PAK1的异常激活和易位则出现在认知缺陷开始时。在PAK1的下游,LIM激酶使丝切蛋白失活,导致丝切蛋白病变,而Rho依赖性激酶ROCK的激活增加Aβ的产生。Aβ对fyn的激活破坏了神经元PAK1和ROCK介导的信号传导,导致突触缺陷。抗淀粉样化合物姜黄素降低PAK1水平可抑制突触毒性。同样,包括亨廷顿舞蹈病(HD)在内的其他神经系统疾病也显示出PAK的失调。PAK1通过增强亨廷顿蛋白聚集来调节突变型亨廷顿蛋白的毒性,抑制PAK活性可改善HD以及脆性X综合征(FXS)的症状。由于PAK在学习和记忆中起关键作用,并且在许多认知障碍中受到破坏,因此针对AD、HD和XLMR中的PAK信号传导可能是AD、HD和XLMR的一种新的共同治疗靶点。