Université de Grenoble 1/CNRS, LIPhy UMR 5588, Grenoble, F-38041, France.
J Phys Chem A. 2012 Dec 20;116(50):12271-9. doi: 10.1021/jp307195v. Epub 2012 Dec 11.
We present new calculations of the branching ratios between the various electronic and isotopic photodissociation channels of ozone. Special emphasis is placed on the isotopic/isotopologue differences because the contribution of the ozone photodissociation to the oxygen isotope and ozone isotopologue enrichments or fractionations is important for atmospheric applications. These branching ratios, which depend on photon energy, have been calculated with a full quantum mechanical wavepacket propagation approach: the multiconfiguration time-dependent Hartree (MCTDH) method. Five ozone isotopologues are considered: three symmetric, (16)O(3) (noted 666), (16)O(17)O(16)O (676), and (16)O(18)O(16)O (686); two asymmetric, (16)O(2)(17)O (noted 667) and (16)O(2)(18)O (668). The 668 and 667 asymmetric isotopologues can dissociate into either 66 + 8 or 68 + 6 for 668 and into 66 + 7 or 67 + 6 for 667. In the ranges of the Chappuis and Hartley bands, the dissociation is very fast and electronic and isotopic branching ratios are obtained from the wavepacket fluxes through complex absorbing potentials (CAPs) located perpendicular to the dissociation channels of the potential energy surfaces (PESs) of the A (1)B(1) (Chappuis) and B 3(1)A' (Hartley/Huggins) electronic states. In the range of the Huggins band the dissociation is much slower and the isotopic branching ratios of 667 and 668 asymmetric isotopologues, (e.g; 668 → 66 + 8 or 86 + 6) are obtained from the ratios of two partial absorption cross sections corresponding to the selective excitation of one or the other of the two isomers of C(s) symmetry, which dissociate respectively into 66 + 8 and 86 + 6. We find that the photodissociation of the 668 asymmetric isotopologue favors the 68 + 6 channel with a propensity varying between 52% (Hartley) and 54% (Huggins) as a function of the photon energy. The electronic branching ratios to the singlet channel (O(3) + hυ → O((1)D) + O(2)((1)Δ)) are all close to 90% above ≈32,000 cm(-1). Below this energy, the singlet channel is energetically closed and only the triplet channel (O(3) + hυ → O((3)P) + O(2)((3)Σ)) is open. These branching ratios are required to calculate the photolysis rates of each ozone isotopologue, which in turn contribute to the atomic oxygen and the ozone isotopic enrichments in the atmosphere.
我们提出了臭氧各种电子和同位素光解通道之间分支比的新计算。特别强调同位素/同量异位素差异,因为臭氧光解对氧同位素和臭氧同量异位素富集或分馏的贡献对大气应用很重要。这些分支比取决于光子能量,是通过全量子力学波包传播方法计算的:多组态含时哈特ree(MCTDH)方法。考虑了五个臭氧同量异位素:三个对称的(16)O(3)(标记为 666)、(16)O(17)O(16)O(标记为 676)和(16)O(18)O(16)O(标记为 686);两个不对称的(16)O(2)(17)O(标记为 667)和(16)O(2)(18)O(标记为 668)。668 和 667 不对称同量异位素可以分别解离为 66+8 或 68+6 对于 668 和 66+7 或 67+6 对于 667。在 Chappuis 和 Hartley 带的范围内,解离非常快,电子和同位素分支比是通过位于垂直于势能面(PES)解离通道的复吸收势(CAP)的波包通量获得的(A(1)B(1)(Chappuis)和 B 3(1)A'(Hartley/Huggins)电子态。在 Huggins 带的范围内,解离要慢得多,667 和 668 不对称同量异位素的同位素分支比(例如,668→66+8 或 86+6)是通过对应于两个异构体之一的选择性激发的两个部分吸收截面的比值获得的,这两个异构体分别解离为 66+8 和 86+6。我们发现,668 不对称同量异位素的光解有利于 68+6 通道,其倾向度在 52%(Hartley)到 54%(Huggins)之间变化,取决于光子能量。到单重态通道(O(3)+hυ→O((1)D)+O(2)((1)Δ)的电子分支比都接近 90%以上≈32000cm(-1)。在这个能量以下,单重态通道是能量上封闭的,只有三重态通道(O(3)+hυ→O((3)P)+O(2)((3)Σ)是开放的。这些分支比是计算每个臭氧同量异位素光解速率所必需的,而光解速率反过来又会影响大气中的原子氧和臭氧同位素富集。