Suppr超能文献

维持活跃区域中囊泡的快速释放:囊泡连接的潜在作用。

Sustaining rapid vesicular release at active zones: potential roles for vesicle tethering.

机构信息

European Neuroscience Institute Göttingen, Grisebachstrasse 5, 37077 Göttingen, Germany.

出版信息

Trends Neurosci. 2013 Mar;36(3):185-94. doi: 10.1016/j.tins.2012.10.001. Epub 2012 Nov 17.

Abstract

Rapid information processing in our nervous system relies on high-frequency fusion of transmitter-filled vesicles at chemical synapses. Some sensory synapses possess prominent electron-dense ribbon structures that provide a scaffold for tethering synaptic vesicles at the active zone (AZ), enabling sustained vesicular release. Here, we review functional data indicating that some central and neuromuscular synapses can also sustain vesicle-fusion rates that are comparable to those of ribbon-type sensory synapses. Comparison of the ultrastructure across these different types of synapses, together with recent work showing that cytomatrix proteins can tether vesicles and speed vesicle reloading, suggests that filamentous structures may play a key role in vesicle supply. We discuss potential mechanisms by which vesicle tethering could contribute to sustained high rates of vesicle fusion across ribbon-type, central, and neuromuscular synapses.

摘要

我们的神经系统依赖于快速的信息处理,这依赖于在化学突触处充满递质的囊泡的高频融合。一些感觉突触具有明显的电子致密带结构,为在活性区(AZ)处固定突触囊泡提供了支架,从而实现持续的囊泡释放。在这里,我们回顾了功能数据,表明一些中枢和神经肌肉突触也能够维持与带状感觉突触相当的囊泡融合速率。对这些不同类型突触的超微结构进行比较,以及最近的工作表明细胞基质蛋白可以固定囊泡并加速囊泡再加载,表明丝状结构可能在囊泡供应中起关键作用。我们讨论了囊泡固定如何有助于带状、中枢和神经肌肉突触持续高融合率的潜在机制。

相似文献

1
Sustaining rapid vesicular release at active zones: potential roles for vesicle tethering.
Trends Neurosci. 2013 Mar;36(3):185-94. doi: 10.1016/j.tins.2012.10.001. Epub 2012 Nov 17.
2
3
Rolling blackout is required for synaptic vesicle exocytosis.
J Neurosci. 2006 Mar 1;26(9):2369-79. doi: 10.1523/JNEUROSCI.3770-05.2006.
4
Functional Roles of Complexin 3 and Complexin 4 at Mouse Photoreceptor Ribbon Synapses.
J Neurosci. 2016 Jun 22;36(25):6651-67. doi: 10.1523/JNEUROSCI.4335-15.2016.
5
Ceramidase regulates synaptic vesicle exocytosis and trafficking.
J Neurosci. 2004 Sep 8;24(36):7789-803. doi: 10.1523/JNEUROSCI.1146-04.2004.
7
A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth.
Nat Neurosci. 2007 Oct;10(10):1235-7. doi: 10.1038/nn1980. Epub 2007 Sep 16.
9
Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles.
Nature. 1999 Jul 29;400(6743):457-61. doi: 10.1038/22768.
10
Synaptic vesicle fusion: today and beyond.
Nat Struct Mol Biol. 2019 Aug;26(8):663-668. doi: 10.1038/s41594-019-0277-z.

引用本文的文献

1
Presynaptic αδs specify synaptic gain, not synaptogenesis, in the mammalian brain.
Neuron. 2025 Jun 18;113(12):1886-1897.e9. doi: 10.1016/j.neuron.2025.04.013. Epub 2025 May 13.
2
Blobby is a synaptic active zone assembly protein required for memory in Drosophila.
Nat Commun. 2025 Jan 2;16(1):271. doi: 10.1038/s41467-024-55382-9.
3
The role of syntaxins in retinal function and health.
Front Cell Neurosci. 2024 May 10;18:1380064. doi: 10.3389/fncel.2024.1380064. eCollection 2024.
4
Interpretation of presynaptic phenotypes of synaptic plasticity in terms of a two-step priming process.
J Gen Physiol. 2024 Jan 1;156(1). doi: 10.1085/jgp.202313454. Epub 2023 Dec 19.
5
Fully-primed slowly-recovering vesicles mediate presynaptic LTP at neocortical neurons.
Proc Natl Acad Sci U S A. 2023 Oct 24;120(43):e2305460120. doi: 10.1073/pnas.2305460120. Epub 2023 Oct 19.
7
Computational models of neurotransmission at cerebellar synapses unveil the impact on network computation.
Front Comput Neurosci. 2022 Oct 28;16:1006989. doi: 10.3389/fncom.2022.1006989. eCollection 2022.
9
Calretinin-Expressing Synapses Show Improved Synaptic Efficacy with Reduced Asynchronous Release during High-Rate Activity.
J Neurosci. 2022 Mar 30;42(13):2729-2742. doi: 10.1523/JNEUROSCI.1773-21.2022. Epub 2022 Feb 14.
10
Disturbed Presynaptic Ca Signaling in Photoreceptors in the EAE Mouse Model of Multiple Sclerosis.
iScience. 2020 Nov 20;23(12):101830. doi: 10.1016/j.isci.2020.101830. eCollection 2020 Dec 18.

本文引用的文献

1
The presynaptic active zone.
Neuron. 2012 Jul 12;75(1):11-25. doi: 10.1016/j.neuron.2012.06.012.
2
Short-term presynaptic plasticity.
Cold Spring Harb Perspect Biol. 2012 Jul 1;4(7):a005702. doi: 10.1101/cshperspect.a005702.
3
Synaptic vesicle pools and dynamics.
Cold Spring Harb Perspect Biol. 2012 Aug 1;4(8):a013680. doi: 10.1101/cshperspect.a013680.
4
Deep molecular diversity of mammalian synapses: why it matters and how to measure it.
Nat Rev Neurosci. 2012 May 10;13(6):365-79. doi: 10.1038/nrn3170.
5
Regulation of synaptic vesicle docking by different classes of macromolecules in active zone material.
PLoS One. 2012;7(3):e33333. doi: 10.1371/journal.pone.0033333. Epub 2012 Mar 16.
6
Actin-dependent rapid recruitment of reluctant synaptic vesicles into a fast-releasing vesicle pool.
Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):E765-74. doi: 10.1073/pnas.1114072109. Epub 2012 Mar 5.
7
Adaptation of granule cell to Purkinje cell synapses to high-frequency transmission.
J Neurosci. 2012 Feb 29;32(9):3267-80. doi: 10.1523/JNEUROSCI.3175-11.2012.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验