Department of Chemical and Biological Engineering, University of Colorado at Boulder, Jennie Smoly Caruthers Biotechnology Building, UCB 596, Boulder, CO 80309, USA.
Metab Eng. 2013 Jan;15:124-33. doi: 10.1016/j.ymben.2012.10.007. Epub 2012 Nov 17.
The identification of relevant gene targets for engineering a desired trait is a key step in combinatorial strain engineering. Here, we applied the multi-Scalar Analysis of Library Enrichments (SCALEs) approach to map ethanol tolerance onto 1,000,000 genomic-library clones in Escherichia coli. We assigned fitness scores to each of the ∼4,300 genes in E. coli, and through follow-up confirmatory studies identified 9 novel genetic targets (12 genes total) that increase E. coli ethanol tolerance (up to 6-fold improved growth). These genetic targets are involved in the processes related to cell membrane composition, translation, serine biosynthesis, and transcription regulation. Transcriptional profiling of the ethanol stress response in 5 of these ethanol-tolerant clones revealed a total of 700 genes with significantly altered expression (mapped to 615 significantly enriched gene ontology terms) across all five clones, with similar overall changes in global gene expression between two clone clusters. All ethanol-tolerant clones analyzed shared 6% of the overexpressed genes and showed enrichment for transcription regulation-related GO terms. iTRAQ-based proteomic analysis of ethanol-tolerant strains identified upregulation of proteins related to ROS mitigation, fatty acid biosynthesis, and vitamin biosynthesis as compared to the parent strain's ethanol response. The approach we outline here will be useful for engineering a variety of other traits and further improvements in alcohol tolerance.
确定相关基因靶标以实现所需性状的工程设计是组合菌株工程的关键步骤。在这里,我们应用多标度文库富集分析(SCALEs)方法,将乙醇耐受性映射到大肠杆菌的 100 万个基因组文库克隆上。我们为大肠杆菌中的约 4300 个基因分配了适合度分数,并通过后续的确认性研究确定了 9 个新的遗传靶标(共 12 个基因),这些靶标可以提高大肠杆菌的乙醇耐受性(最高可提高 6 倍的生长速度)。这些遗传靶标涉及细胞膜组成、翻译、丝氨酸生物合成和转录调控等过程。对其中 5 个乙醇耐受克隆的乙醇应激反应进行转录谱分析,共发现 700 个表达显著改变的基因(映射到 615 个显著富集的基因本体术语),在两个克隆簇之间,整体基因表达变化相似。所有分析的乙醇耐受克隆共享 6%的过表达基因,并显示与转录调控相关的 GO 术语富集。与亲本菌株的乙醇应答相比,基于 iTRAQ 的乙醇耐受菌株的蛋白质组学分析鉴定出与 ROS 缓解、脂肪酸生物合成和维生素生物合成相关的蛋白质上调。我们在这里概述的方法将有助于工程设计各种其他性状,并进一步提高酒精耐受性。