Université Joseph Fourier Grenoble 1/CNRS, Département de Chimie Moléculaire, UMR 5250, Institut de Chimie Moléculaire de Grenoble, FR-CNRS-2607, Laboratoire de Chimie Inorganique Rédox, BP 53, 38041 Grenoble Cedex 9, France.
Chemistry. 2013 Jan 7;19(2):782-92. doi: 10.1002/chem.201202555. Epub 2012 Nov 21.
We report a very efficient homogeneous system for the visible-light-driven hydrogen production in pure aqueous solution at room temperature. This comprises [Rh(III) (dmbpy)(2)Cl(2)]Cl (1) as catalyst, [Ru(bpy)(3)]Cl(2) (PS1) as photosensitizer, and ascorbate as sacrificial electron donor. Comparative studies in aqueous solutions also performed with other known rhodium catalysts, or with an iridium photosensitizer, show that 1) the PS1/1/ascorbate/ascorbic acid system is by far the most active rhodium-based homogeneous photocatalytic system for hydrogen production in a purely aqueous medium when compared to the previously reported rhodium catalysts, Na(3)[Rh(I) (dpm)(3)Cl] and [Rh(III)(bpy)Cp*(H(2)O)]SO(4) and 2) the system is less efficient when [Ir(III) (ppy)(2)(bpy)]Cl(PS2) is used as photosensitizer. Because catalyst 1 is the most efficient rhodium-based H(2)-evolving catalyst in water, the performance limits of this complex were further investigated by varying the PS1/1 ratio at pH 4.0. Under optimal conditions, the system gives up to 1010 turnovers versus the catalyst with an initial turnover frequency as high as 857 TON h(-1). Nanosecond transient absorption spectroscopy measurements show that the initial step of the photocatalytic H(2)-evolution mechanism is a reductive quenching of the PS1 excited state by ascorbate, leading to the reduced form of PS1, which is then able to reduce Rh(III)(dmbpy)(2)Cl(2) to Rh(I)(dmbpy)(2). This reduced species can react with protons to yield the hydride Rh(III)(H)(dmbpy)(2)(H(2)O), which is the key intermediate for the H(2) production.
我们报道了一种在室温下纯水溶液中可见光驱动氢气产生的非常有效的均相体系。该体系由[Rh(III)(dmbpy)(2)Cl(2)]Cl(1)作为催化剂,[Ru(bpy)(3)]Cl(2)(PS1)作为光敏剂,抗坏血酸作为牺牲电子供体。在水溶液中的比较研究也用其他已知的铑催化剂或用一个铱敏化剂进行,结果表明 1)PS1/1/抗坏血酸/抗坏血酸体系是迄今为止最活跃的基于铑的均相光催化氢气产生体系在一个纯粹的水介质中与以前报道的铑催化剂相比,Na(3)[Rh(I)(dpm)(3)Cl]和[Rh(III)(bpy)Cp*(H(2)O)]SO(4)和 2)当[Ir(III)(ppy)(2)(bpy)]Cl(PS2)用作光敏剂时,该体系效率较低。由于催化剂 1 是水中最有效的基于铑的 H(2)释放催化剂,因此通过在 pH 4.0 时改变 PS1/1 比进一步研究了该配合物的性能限制。在最佳条件下,该体系给出了高达 1010 次周转,初始周转率高达 857 TON h(-1)。纳秒瞬态吸收光谱测量表明,光催化 H(2)演化机制的初始步骤是抗坏血酸还原 PS1 激发态,导致 PS1 的还原形式,然后能够还原Rh(III)(dmbpy)(2)Cl(2)至Rh(I)(dmbpy)(2)。这种还原物种可以与质子反应生成氢化物Rh(III)(H)(dmbpy)(2)(H(2)O),这是 H(2)产生的关键中间体。