Suppr超能文献

迈向廉价超硬材料:基于四硼化钨的固溶体。

Toward inexpensive superhard materials: tungsten tetraboride-based solid solutions.

机构信息

Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA.

出版信息

J Am Chem Soc. 2012 Dec 26;134(51):20660-8. doi: 10.1021/ja308219r. Epub 2012 Dec 13.

Abstract

To enhance the hardness of tungsten tetraboride (WB(4)), a notable lower cost member of the late transition-metal borides, we have synthesized and characterized solid solutions of this material with tantalum (Ta), manganese (Mn), and chromium (Cr). Various concentrations of these transition-metal elements, ranging from 0.0 to 50.0 at. %, on a metals basis, were made. Arc melting was used to synthesize these refractory compounds from the pure elements. Elemental and phase purity of the samples were examined using energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD), and microindentation was utilized to measure the Vickers hardness under applied loads of 0.49-4.9 N. XRD results indicate that the solubility limit is below 10 at. % for Cr and below 20 at. % for Mn, while Ta is soluble in WB(4) above 20 at. %. Optimized Vickers hardness values of 52.8 ± 2.2, 53.7 ± 1.8, and 53.5 ± 1.9 GPa were achieved, under an applied load of 0.49 N, when ~2.0, 4.0, and 10.0 at. % Ta, Mn, and Cr were added to WB(4) on a metals basis, respectively. Motivated by these results, ternary solid solutions of WB(4) were produced, keeping the concentration of Ta in WB(4) fixed at 2.0 at. % and varying the concentration of Mn or Cr. This led to hardness values of 55.8 ± 2.3 and 57.3 ± 1.9 GPa (under a load of 0.49 N) for the combinations W(0.94)Ta(0.02)Mn(0.04)B(4) and W(0.93)Ta(0.02)Cr(0.05)B(4), respectively. In situ high-pressure XRD measurements collected up to ~65 GPa generated a bulk modulus of 335 ± 3 GPa for the hardest WB(4) solid solution, W(0.93)Ta(0.02)Cr(0.05)B(4), and showed suppression of a pressure-induced phase transition previously observed in pure WB(4).

摘要

为了提高钨四硼化物(WB(4))的硬度,我们合成并表征了这种材料与钽(Ta)、锰(Mn)和铬(Cr)的固溶体。在金属基础上,以 0.0 至 50.0 at.%的各种浓度制备了这些过渡金属元素。使用电弧熔炼从纯元素合成这些难熔化合物。使用能量色散 X 射线光谱(EDS)和 X 射线衍射(XRD)检查样品的元素和相纯度,并且使用微压痕在施加 0.49-4.9 N 的负载下测量维氏硬度。XRD 结果表明,Cr 的溶解度极限低于 10 at.%,Mn 的溶解度极限低于 20 at.%,而 Ta 可溶于 WB(4)中的浓度高于 20 at.%。在施加 0.49 N 的负载下,当在金属基础上分别向 WB(4)中添加约 2.0、4.0 和 10.0 at.%的 Ta、Mn 和 Cr 时,实现了 52.8±2.2、53.7±1.8 和 53.5±1.9 GPa 的优化维氏硬度值。受这些结果的启发,生产了 WB(4)的三元固溶体,保持 WB(4)中 Ta 的浓度固定在 2.0 at.%,并改变 Mn 或 Cr 的浓度。这导致在施加 0.49 N 的负载下,对于 W(0.94)Ta(0.02)Mn(0.04)B(4)和 W(0.93)Ta(0.02)Cr(0.05)B(4)的组合,硬度值分别为 55.8±2.3 和 57.3±1.9 GPa。在高达约 65 GPa 的原位高压 XRD 测量中,为最硬的 WB(4)固溶体 W(0.93)Ta(0.02)Cr(0.05)B(4)生成了 335±3 GPa 的体弹性模量,并显示了以前在纯 WB(4)中观察到的压力诱导相变的抑制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验