Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States.
J Am Chem Soc. 2012 Dec 12;134(49):19969-72. doi: 10.1021/ja309317u. Epub 2012 Nov 30.
Carbon dioxide reduction is an essential component of many prospective technologies for the renewable synthesis of carbon-containing fuels. Known catalysts for this reaction generally suffer from low energetic efficiency, poor product selectivity, and rapid deactivation. We show that the reduction of thick Au oxide films results in the formation of Au nanoparticles ("oxide-derived Au") that exhibit highly selective CO(2) reduction to CO in water at overpotentials as low as 140 mV and retain their activity for at least 8 h. Under identical conditions, polycrystalline Au electrodes and several other nanostructured Au electrodes prepared via alternative methods require at least 200 mV of additional overpotential to attain comparable CO(2) reduction activity and rapidly lose their activity. Electrokinetic studies indicate that the improved catalysis is linked to dramatically increased stabilization of the CO(2)(•-) intermediate on the surfaces of the oxide-derived Au electrodes.
二氧化碳还原是许多有前途的可再生含碳燃料合成技术的重要组成部分。已知用于该反应的催化剂通常具有能量效率低、产物选择性差和快速失活等缺点。我们发现,厚的 Au 氧化物薄膜的还原会导致形成 Au 纳米粒子(“氧化物衍生 Au”),这些纳米粒子在高达 140 mV 的过电势下在水中表现出对 CO2 到 CO 的高选择性还原,并且至少 8 小时保持其活性。在相同条件下,多晶 Au 电极和通过其他方法制备的几种其他纳米结构 Au 电极需要至少 200 mV 的附加过电势才能达到可比的 CO2 还原活性,并迅速失去其活性。电动动力学研究表明,改进的催化作用与 CO2(•-)中间体在氧化物衍生 Au 电极表面的稳定性显著提高有关。
J Am Chem Soc. 2012-11-30
Chemphyschem. 2010-5-17
Chem Commun (Camb). 2008-9-28
Phys Chem Chem Phys. 2010-12-10
Phys Chem Chem Phys. 2015-8-28
Small Sci. 2025-2-11
Angew Chem Int Ed Engl. 2025-7-21
Small Sci. 2021-8-8