Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37234-0106, United States.
Nano Lett. 2012 Dec 12;12(12):6152-7. doi: 10.1021/nl3029784. Epub 2012 Nov 28.
We demonstrate the formation of a hybridized plasmon-exciton state exhibiting strong exciton-plasmon coupling in ZnO/Zn(0.85)Mg(0.15)O single quantum wells capped with arrays of Al nanodiscs. Tuning the quantum-well width and the diameter and pitch of the Al nanodisc arrays facilitates a transition from the weak-coupling regime into the strong coupling regime. Finite-difference time-domain simulations substantiate the localization of the plasmonic quadrupole moment within the ZnO quantum-well layer, resulting in a hybridized plasmonexciton state demonstrating a Rabi splitting of roughly 15 meV in heterostructures that exhibit a prominent plasmon quadrupole mode. The significant tunability offered by quantum-well heterostructures like those discussed here provides a flexible system for controlling exciton plasmon coupling in a device-compatible thin-film architecture.
我们展示了在 ZnO/Zn(0.85)Mg(0.15)O 单量子阱上形成的杂化等离子体-激子态,该单量子阱由 Al 纳米盘阵列覆盖,表现出强激子-等离子体耦合。通过调整量子阱宽度以及 Al 纳米盘阵列的直径和间距,可以从弱耦合区域过渡到强耦合区域。有限差分时域模拟证实了等离子体四极矩在 ZnO 量子阱层内的局域化,从而形成了杂化等离子体-激子态,在表现出显著等离子体四极模式的异质结构中展示了约 15 meV 的拉比分裂。像这里讨论的那样,通过量子阱异质结构提供的显著可调性为在器件兼容的薄膜结构中控制激子等离子体耦合提供了一个灵活的系统。